Unsupervised Domain Adaptation for RF-Based Gesture Recognition

计算机科学 正规化(语言学) 人工智能 手势识别 手势 域适应 语音识别 一致性(知识库) 数据建模 无线电频率 模式识别(心理学) 特征提取 机器学习 电信 数据库 分类器(UML)
作者
Binbin Zhang,Dongheng Zhang,Yadong Li,Yang Hu,Yan Chen
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (23): 21026-21038 被引量:6
标识
DOI:10.1109/jiot.2023.3284496
摘要

Human gesture recognition with radio frequency (RF) signals has attained acclaim due to the omnipresence, privacy protection, and broad coverage nature of RF signals. These gesture recognition systems rely on neural networks trained with a large number of labeled data. However, the recognition model trained with data under certain conditions would suffer from significant performance degradation when applied in practical deployment, which limits the application of gesture recognition systems. In this article, we propose an unsupervised domain adaptation framework for RF-based gesture recognition aiming to enhance the performance of the recognition model in new conditions by making effective use of the unlabeled data from new conditions. We first propose pseudo labeling and consistency regularization to utilize unlabeled data for model training and eliminate the feature discrepancies in different domains. Then we propose a confidence constraint loss to enhance the effectiveness of pseudo labeling, and design two corresponding data augmentation methods based on the characteristic of the RF signals to strengthen the performance of the consistency regularization, which can make the framework more effective and robust. Furthermore, we propose a cross-match loss to integrate the pseudo labeling and consistency regularization, which makes the whole framework simple yet effective. Extensive experiments demonstrate that the proposed framework could achieve 4.35% and 2.25% accuracy improvement comparing with the state-of-the-art methods on public WiFi data set and millimeter wave (mmWave) radar data set, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助1234采纳,获得10
刚刚
Lxy发布了新的文献求助10
刚刚
尛瞐慶成发布了新的文献求助10
1秒前
1秒前
豆子完成签到 ,获得积分10
2秒前
今后应助迷人嫣然采纳,获得10
3秒前
sisea发布了新的文献求助10
3秒前
3秒前
xyz完成签到,获得积分10
4秒前
4秒前
4秒前
saikun发布了新的文献求助10
5秒前
测试版发布了新的文献求助10
5秒前
5秒前
欧拉完成签到,获得积分10
6秒前
VaVa应助Yang采纳,获得10
6秒前
6秒前
6秒前
yingying发布了新的文献求助10
7秒前
Alkaid完成签到,获得积分10
7秒前
lyj完成签到 ,获得积分10
7秒前
晴天发布了新的文献求助20
7秒前
JY发布了新的文献求助10
7秒前
Banbor2021完成签到,获得积分10
7秒前
WWlifeT完成签到,获得积分20
7秒前
8秒前
8秒前
ZXW完成签到,获得积分10
8秒前
believe完成签到,获得积分10
8秒前
dara997发布了新的文献求助10
8秒前
开心完成签到 ,获得积分10
9秒前
9秒前
violet完成签到,获得积分10
10秒前
12秒前
拾诣完成签到,获得积分10
12秒前
WWlifeT发布了新的文献求助10
12秒前
1234发布了新的文献求助10
13秒前
ASHDSN发布了新的文献求助10
13秒前
XChen完成签到,获得积分10
13秒前
sisea完成签到,获得积分10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299089
求助须知:如何正确求助?哪些是违规求助? 2934118
关于积分的说明 8467235
捐赠科研通 2607521
什么是DOI,文献DOI怎么找? 1423776
科研通“疑难数据库(出版商)”最低求助积分说明 661689
邀请新用户注册赠送积分活动 645336