Traffic Signal Prediction Based on ANFIS and Metaheuristic Algorithms Applied to a Vissim-Based Simulated Intersection

自适应神经模糊推理系统 交叉口(航空) 计算机科学 维西姆 控制器(灌溉) 实时计算 信号定时 基于Kerner三相理论的交通拥堵重构 智能交通系统 交通生成模型 浮动车数据 模糊逻辑 模拟 交通拥挤 模糊控制系统 交通信号灯 工程类 人工智能 运输工程 农学 生物
作者
Amir Shahkar,Şeref Oruç,Aref Yelghi
出处
期刊:Research Square - Research Square 被引量:1
标识
DOI:10.21203/rs.3.rs-3057609/v1
摘要

Abstract Traffic signs are among the most important traffic equipment that are used in urban and non-urban areas and their purpose is to increase road volume and reduce delays while ensuring safe movement. Over the years, due to the growing trend of car production and car use, which has increased urban and road traffic, traffic signs have increased and become more diverse and efficient. One of these traffic control methods at intersections is the use of traffic signal scheduling techniques, which despite the advantages of this method has a major drawback, and that is that due to the dynamic behavior of traffic, this method has issues in predicting traffic signal timing especially in times of peak traffic. Designing appropriate green times for traffic signal lights with Adaptive Neuro-Fuzzy Inference System (ANFIS) technique in traffic signal controller is a feasible solution to tackle this issue in urban network congestion during peak hours. The capability to learn from experience is one of the specifications of ANFIS that makes these techniques appropriate to mention genuine universe challenges. ANFIS Traffic Signal Controller is used to control the traffic density of an intersection so that it can reduce the queue length and latency to the minimum optimal time expected. ANFIS Traffic Controller is an intelligent controller with automatic learning sets the appropriate green time for each phase of the traffic light at the beginning of the phase, and the system generally depends on traffic information. The controller uses metaheuristic algorithms to tune ANFIS parameters during learning time. The first part of this article concerns the simulation of an isolated intersection in a VISSIM simulator, for the generation of the new phase distribution of it (optimum cycle). In the second part, ANFIS with metaheuristic algorithms is modelized and applied to the VISSIM simulated intersection. In the modelized system, for training and testing phases, 90 samples of newly generated data sets from VISSIM, and 40 others were considered respectively. By tuning the parameters using metaheuristic algorithms, we tried to increase the accuracy of the ANFIS network prediction to demonstrate the high performance of the ANFIS network in predicting and controlling traffic in intersections. The predicting system uses real-time data to predict the signal time. Results of the analysis demonstrated that our predictor system with ANFIS-GA indicates better predicts in comparison to ANFIS-PSO and ANFIS-HS. The predictor system presented a total and Relative Mean Square Error of 2.9619 and 8.4215 in the train set and 4.2209 and 11.8501 in the test respectively. The designed prediction model in the field of complex data showed an acceptable level of reliability and flexibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助百里幻竹采纳,获得10
刚刚
刚刚
彩色元瑶完成签到,获得积分20
1秒前
2秒前
2秒前
2秒前
imkhun1021发布了新的文献求助10
2秒前
Ava应助小草莓采纳,获得10
2秒前
大模型应助小橙子采纳,获得10
4秒前
savoki发布了新的文献求助30
6秒前
duanhuiyuan应助庞桂妃采纳,获得30
6秒前
lh发布了新的文献求助10
7秒前
Rambo发布了新的文献求助30
9秒前
9秒前
mignonette完成签到 ,获得积分10
10秒前
10秒前
小鲨鱼完成签到,获得积分10
11秒前
12秒前
xuyi完成签到,获得积分10
12秒前
13秒前
华华发布了新的文献求助10
13秒前
15秒前
Crema应助未来的闫院士采纳,获得10
16秒前
17秒前
17秒前
小橙子发布了新的文献求助10
17秒前
江城子发布了新的文献求助10
20秒前
20秒前
我是老大应助xjl采纳,获得10
20秒前
21秒前
22秒前
Orange应助舒适的平蓝采纳,获得10
22秒前
ccm发布了新的文献求助10
23秒前
24秒前
炭小黑完成签到,获得积分10
24秒前
25秒前
25秒前
张6发布了新的文献求助10
27秒前
Rambo发布了新的文献求助10
28秒前
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455233
求助须知:如何正确求助?哪些是违规求助? 3050548
关于积分的说明 9021628
捐赠科研通 2739152
什么是DOI,文献DOI怎么找? 1502472
科研通“疑难数据库(出版商)”最低求助积分说明 694544
邀请新用户注册赠送积分活动 693320