Automatic prediction of acute coronary syndrome based on pericoronary adipose tissue and atherosclerotic plaques

冠状动脉疾病 特征(语言学) 医学 人工智能 特征提取 模式识别(心理学) 急性冠脉综合征 放射科 脂肪组织 计算机科学 心脏病学 内科学 语言学 哲学 心肌梗塞
作者
Yan Huang,Jinzhu Yang,Yang Hou,Qi Sun,Shuang Ma,Chaolu Feng,Jin Shang
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:108: 102264-102264 被引量:3
标识
DOI:10.1016/j.compmedimag.2023.102264
摘要

Cardiovascular disease is the leading cause of human death worldwide, and acute coronary syndrome (ACS) is a common first manifestation of this. Studies have shown that pericoronary adipose tissue (PCAT) computed tomography (CT) attenuation and atherosclerotic plaque characteristics can be used to predict future adverse ACS events. However, radiomics-based methods have limitations in extracting features of PCAT and atherosclerotic plaques. Therefore, we propose a hybrid deep learning framework capable of extracting coronary CT angiography (CCTA) imaging features of both PCAT and atherosclerotic plaques for ACS prediction. The framework designs a two-stream CNN feature extraction (TSCFE) module to extract the features of PCAT and atherosclerotic plaques, respectively, and a channel feature fusion (CFF) to explore feature correlations between their features. Specifically, a trilinear-based fully-connected (FC) prediction module stepwise maps high-dimensional representations to low-dimensional label spaces. The framework was validated in retrospectively collected suspected coronary artery disease cases examined by CCTA. The prediction accuracy, sensitivity, specificity, and area under curve (AUC) are all higher than the classical image classification networks and state-of-the-art medical image classification methods. The experimental results show that the proposed method can effectively and accurately extract CCTA imaging features of PCAT and atherosclerotic plaques and explore the feature correlations to produce impressive performance. Thus, it has the potential value to be applied in clinical applications for accurate ACS prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
情怀应助kg5g采纳,获得10
2秒前
萤火未央完成签到,获得积分10
5秒前
6秒前
EZboom完成签到,获得积分10
6秒前
欣欣子应助激昂的梦山采纳,获得10
8秒前
8秒前
思源应助黄臻采纳,获得10
11秒前
12秒前
15秒前
EZboom发布了新的文献求助10
20秒前
21秒前
天天快乐应助加百莉采纳,获得10
21秒前
科目三应助呆妞采纳,获得10
22秒前
22秒前
小巧曼容完成签到,获得积分10
22秒前
23秒前
黄臻发布了新的文献求助10
26秒前
温暖逊发布了新的文献求助10
28秒前
29秒前
liuynnn发布了新的文献求助10
31秒前
zhou完成签到,获得积分10
31秒前
32秒前
33秒前
加百莉发布了新的文献求助10
33秒前
apparate完成签到,获得积分10
36秒前
呆妞发布了新的文献求助10
38秒前
liuynnn完成签到,获得积分20
40秒前
天才小仙女完成签到,获得积分10
43秒前
行星一只兔完成签到 ,获得积分10
45秒前
BowieHuang应助Jodie采纳,获得100
46秒前
Orange应助chichi采纳,获得10
48秒前
南风完成签到 ,获得积分10
50秒前
彪壮的吐司完成签到,获得积分10
52秒前
zhouxw27完成签到,获得积分10
1分钟前
akiyy完成签到,获得积分10
1分钟前
无花果应助akiyy采纳,获得10
1分钟前
Juid举报老阎求助涉嫌违规
1分钟前
快乐的90后fjk完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557689
求助须知:如何正确求助?哪些是违规求助? 4642768
关于积分的说明 14669036
捐赠科研通 4584191
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459538