Automatic prediction of acute coronary syndrome based on pericoronary adipose tissue and atherosclerotic plaques

冠状动脉疾病 特征(语言学) 医学 人工智能 特征提取 模式识别(心理学) 急性冠脉综合征 放射科 脂肪组织 计算机科学 心脏病学 内科学 语言学 哲学 心肌梗塞
作者
Yan Huang,Jinzhu Yang,Yang Hou,Qi Sun,Shuang Ma,Chaolu Feng,Jin Shang
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:108: 102264-102264
标识
DOI:10.1016/j.compmedimag.2023.102264
摘要

Cardiovascular disease is the leading cause of human death worldwide, and acute coronary syndrome (ACS) is a common first manifestation of this. Studies have shown that pericoronary adipose tissue (PCAT) computed tomography (CT) attenuation and atherosclerotic plaque characteristics can be used to predict future adverse ACS events. However, radiomics-based methods have limitations in extracting features of PCAT and atherosclerotic plaques. Therefore, we propose a hybrid deep learning framework capable of extracting coronary CT angiography (CCTA) imaging features of both PCAT and atherosclerotic plaques for ACS prediction. The framework designs a two-stream CNN feature extraction (TSCFE) module to extract the features of PCAT and atherosclerotic plaques, respectively, and a channel feature fusion (CFF) to explore feature correlations between their features. Specifically, a trilinear-based fully-connected (FC) prediction module stepwise maps high-dimensional representations to low-dimensional label spaces. The framework was validated in retrospectively collected suspected coronary artery disease cases examined by CCTA. The prediction accuracy, sensitivity, specificity, and area under curve (AUC) are all higher than the classical image classification networks and state-of-the-art medical image classification methods. The experimental results show that the proposed method can effectively and accurately extract CCTA imaging features of PCAT and atherosclerotic plaques and explore the feature correlations to produce impressive performance. Thus, it has the potential value to be applied in clinical applications for accurate ACS prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
阴暗的爬行关注了科研通微信公众号
1秒前
Tangviva1988发布了新的文献求助10
1秒前
木卯子发布了新的文献求助10
2秒前
充电宝应助dicpaccn采纳,获得10
2秒前
拿铁卢发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
5秒前
5秒前
xi完成签到,获得积分10
5秒前
7秒前
bobo完成签到,获得积分10
7秒前
7秒前
Dr_Zhang发布了新的文献求助30
8秒前
dream发布了新的文献求助10
9秒前
Yunis发布了新的文献求助10
9秒前
bobo发布了新的文献求助10
10秒前
木卯子完成签到,获得积分10
10秒前
11秒前
11秒前
陈大胖发布了新的文献求助10
11秒前
12秒前
科研通AI5应助韩菲菲采纳,获得10
12秒前
12秒前
13秒前
迷人的芹菜完成签到,获得积分10
13秒前
15秒前
111发布了新的文献求助10
16秒前
猪猪hero应助北辰采纳,获得10
16秒前
元元369发布了新的文献求助20
18秒前
柒柒牧马发布了新的文献求助10
19秒前
xiaoting完成签到,获得积分10
20秒前
眯眯眼的惋庭完成签到,获得积分10
21秒前
陈大胖完成签到,获得积分20
21秒前
快乐小狗完成签到,获得积分10
24秒前
口腔小废物完成签到 ,获得积分10
25秒前
ZL张莉发布了新的文献求助10
25秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979515
求助须知:如何正确求助?哪些是违规求助? 3523465
关于积分的说明 11217759
捐赠科研通 3260973
什么是DOI,文献DOI怎么找? 1800315
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807144