Few-Shot Object Detection With Self-Supervising and Cooperative Classifier

计算机科学 人工智能 分类器(UML) 帕斯卡(单位) 模式识别(心理学) 机器学习 目标检测 通知 政治学 法学 程序设计语言
作者
Di Qi,Jilin Hu,Jianbing Shen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (4): 5435-5446
标识
DOI:10.1109/tnnls.2022.3204597
摘要

Few-shot object detection (FSOD), which detects novel objects with only a few training instances, has recently attracted more attention. Previous works focus on making the most use of label information of objects. Still, they fail to consider the structural and semantic information of the image itself and solve the misclassification between data-abundant base classes and data-scarce novel classes efficiently. In this article, we propose FSOD with Self-Supervising and Cooperative Classifier ( $\text {F}\text {S}^{3}\text {C}$ ) approach to deal with those concerns. Specifically, we analyze the underlying performance degradation of novel classes in FSOD and discover that false-positive samples are the main reason. By looking into these false-positive samples, we further notice that misclassifying novel classes as base classes are the main cause. Thus, we introduce double RoI heads into the existing Fast-RCNN to learn more specific features for novel classes. We also consider using self-supervised learning (SSL) to learn more structural and semantic information. Finally, we propose a cooperative classifier (CC) with the base–novel regularization to maximize the interclass variance between base and novel classes. In the experiment, $\text {F}\text {S}^{3}\text {C}$ outperforms all the latest baselines in most cases on PASCAL VOC and COCO.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mystar发布了新的文献求助10
1秒前
1秒前
渣兔发布了新的文献求助50
1秒前
李爱国应助syx采纳,获得10
2秒前
呱呱完成签到,获得积分10
2秒前
ax发布了新的文献求助10
2秒前
lhhhhh完成签到,获得积分10
2秒前
杰文完成签到,获得积分10
2秒前
3秒前
yu发布了新的文献求助10
3秒前
3秒前
赘婿应助阔落采纳,获得10
3秒前
善学以致用应助叮当喵采纳,获得10
3秒前
叶坊发布了新的文献求助10
3秒前
4秒前
4秒前
蛋白完成签到,获得积分10
4秒前
5秒前
untilyou完成签到,获得积分10
5秒前
Arizaq发布了新的文献求助20
5秒前
5秒前
传奇3应助神啊救救我吧采纳,获得10
6秒前
zhao完成签到 ,获得积分10
6秒前
6秒前
6秒前
万能图书馆应助难过盼海采纳,获得10
7秒前
Oo关闭了Oo文献求助
7秒前
顺利宛亦发布了新的文献求助10
7秒前
阿不卡巴完成签到,获得积分10
7秒前
脱壳金蝉发布了新的文献求助10
8秒前
sqc完成签到 ,获得积分10
8秒前
Cola完成签到,获得积分0
8秒前
bbbb发布了新的文献求助10
9秒前
yu完成签到,获得积分10
9秒前
phj发布了新的文献求助10
9秒前
Arizaq完成签到,获得积分10
9秒前
我是老大应助lz采纳,获得10
9秒前
Wen3197312602发布了新的文献求助10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545851
求助须知:如何正确求助?哪些是违规求助? 4631846
关于积分的说明 14622939
捐赠科研通 4573564
什么是DOI,文献DOI怎么找? 2507609
邀请新用户注册赠送积分活动 1484354
关于科研通互助平台的介绍 1455594