Speech Enhancement and Dereverberation With Diffusion-Based Generative Models

计算机科学 判别式 语音增强 噪音(视频) 语音识别 一般化 形式主义(音乐) 过程(计算) 人工智能 降噪 数学 艺术 数学分析 音乐剧 视觉艺术 图像(数学) 操作系统
作者
Julius Richter,Simon Welker,Jean-Marie Lemercier,Bunlong Lay,Timo Gerkmann
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 2351-2364 被引量:101
标识
DOI:10.1109/taslp.2023.3285241
摘要

In this work, we build upon our previous publication and use diffusion-based generative models for speech enhancement. We present a detailed overview of the diffusion process that is based on a stochastic differential equation and delve into an extensive theoretical examination of its implications. Opposed to usual conditional generation tasks, we do not start the reverse process from pure Gaussian noise but from a mixture of noisy speech and Gaussian noise. This matches our forward process which moves from clean speech to noisy speech by including a drift term. We show that this procedure enables using only 30 diffusion steps to generate high-quality clean speech estimates. By adapting the network architecture, we are able to significantly improve the speech enhancement performance, indicating that the network, rather than the formalism, was the main limitation of our original approach. In an extensive cross-dataset evaluation, we show that the improved method can compete with recent discriminative models and achieves better generalization when evaluating on a different corpus than used for training. We complement the results with an instrumental evaluation using real-world noisy recordings and a listening experiment, in which our proposed method is rated best. Examining different sampler configurations for solving the reverse process allows us to balance the performance and computational speed of the proposed method. Moreover, we show that the proposed method is also suitable for dereverberation and thus not limited to additive background noise removal. Code and audio examples are available online 1 https://github.com/sp-uhh/sgmse .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Carpe完成签到,获得积分10
刚刚
宁绮兰完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
李爱国应助一直很安静采纳,获得10
2秒前
英姑应助远志采纳,获得10
2秒前
舒心初晴完成签到,获得积分10
3秒前
CodeCraft应助犹豫的踏歌采纳,获得10
5秒前
尊敬的寄松完成签到,获得积分10
5秒前
6秒前
kyle发布了新的文献求助40
7秒前
7秒前
endlessloop发布了新的文献求助10
7秒前
善学以致用应助奥利奥采纳,获得50
8秒前
吴雨茜完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
一直很安静完成签到,获得积分10
9秒前
10秒前
科研完成签到,获得积分10
11秒前
zqingqing发布了新的文献求助10
11秒前
GPTea完成签到,获得积分0
11秒前
lbj发布了新的文献求助30
12秒前
12秒前
endlessloop完成签到,获得积分20
13秒前
Yulb发布了新的文献求助10
15秒前
爆米花应助闫素肃采纳,获得10
15秒前
tsuki完成签到 ,获得积分10
16秒前
李俊枫发布了新的文献求助30
16秒前
16秒前
16秒前
xyx发布了新的文献求助10
17秒前
lightman完成签到,获得积分10
17秒前
17秒前
光亮的秋白完成签到 ,获得积分10
18秒前
Dreamable完成签到,获得积分10
18秒前
外向烤鸡完成签到,获得积分10
19秒前
20秒前
20秒前
远志发布了新的文献求助10
21秒前
脑洞疼应助Dreamable采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680124
求助须知:如何正确求助?哪些是违规求助? 4996372
关于积分的说明 15171821
捐赠科研通 4839954
什么是DOI,文献DOI怎么找? 2593739
邀请新用户注册赠送积分活动 1546730
关于科研通互助平台的介绍 1504779