Speech Enhancement and Dereverberation With Diffusion-Based Generative Models

计算机科学 判别式 语音增强 噪音(视频) 语音识别 一般化 形式主义(音乐) 过程(计算) 人工智能 降噪 数学 艺术 数学分析 音乐剧 视觉艺术 图像(数学) 操作系统
作者
Julius Richter,Simon Welker,Jean-Marie Lemercier,Bunlong Lay,Timo Gerkmann
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 2351-2364 被引量:101
标识
DOI:10.1109/taslp.2023.3285241
摘要

In this work, we build upon our previous publication and use diffusion-based generative models for speech enhancement. We present a detailed overview of the diffusion process that is based on a stochastic differential equation and delve into an extensive theoretical examination of its implications. Opposed to usual conditional generation tasks, we do not start the reverse process from pure Gaussian noise but from a mixture of noisy speech and Gaussian noise. This matches our forward process which moves from clean speech to noisy speech by including a drift term. We show that this procedure enables using only 30 diffusion steps to generate high-quality clean speech estimates. By adapting the network architecture, we are able to significantly improve the speech enhancement performance, indicating that the network, rather than the formalism, was the main limitation of our original approach. In an extensive cross-dataset evaluation, we show that the improved method can compete with recent discriminative models and achieves better generalization when evaluating on a different corpus than used for training. We complement the results with an instrumental evaluation using real-world noisy recordings and a listening experiment, in which our proposed method is rated best. Examining different sampler configurations for solving the reverse process allows us to balance the performance and computational speed of the proposed method. Moreover, we show that the proposed method is also suitable for dereverberation and thus not limited to additive background noise removal. Code and audio examples are available online 1 https://github.com/sp-uhh/sgmse .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芳芳子呀完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
HY发布了新的文献求助10
1秒前
佟鹭其完成签到 ,获得积分10
2秒前
4秒前
樊芙宾发布了新的文献求助10
5秒前
大个应助liuzengzhang666采纳,获得30
5秒前
6秒前
6秒前
8秒前
善学以致用应助summer采纳,获得10
8秒前
清爽语柳完成签到,获得积分10
9秒前
9秒前
不倦应助kevinchan2009采纳,获得10
9秒前
对称破缺发布了新的文献求助10
11秒前
12秒前
Yin完成签到,获得积分10
12秒前
13秒前
14秒前
杨小鸿发布了新的文献求助10
14秒前
清爽语柳发布了新的文献求助10
14秒前
可爱的函函应助王子采纳,获得10
15秒前
huangyu完成签到,获得积分10
15秒前
yy发布了新的文献求助10
15秒前
魁魁完成签到,获得积分10
15秒前
16秒前
wuming发布了新的文献求助10
16秒前
情怀应助ffy采纳,获得10
17秒前
Eden发布了新的文献求助10
18秒前
jiang发布了新的文献求助10
19秒前
pluto完成签到,获得积分0
19秒前
20秒前
三块石头完成签到,获得积分10
21秒前
君故关注了科研通微信公众号
22秒前
23秒前
23秒前
周公完成签到,获得积分20
23秒前
HY完成签到,获得积分10
24秒前
科研通AI6.1应助dddd采纳,获得10
26秒前
26秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742315
求助须知:如何正确求助?哪些是违规求助? 5407721
关于积分的说明 15344704
捐赠科研通 4883721
什么是DOI,文献DOI怎么找? 2625220
邀请新用户注册赠送积分活动 1574084
关于科研通互助平台的介绍 1531060