Speech Enhancement and Dereverberation With Diffusion-Based Generative Models

计算机科学 判别式 语音增强 噪音(视频) 语音识别 一般化 形式主义(音乐) 过程(计算) 人工智能 降噪 数学 艺术 数学分析 音乐剧 视觉艺术 图像(数学) 操作系统
作者
Julius Richter,Simon Welker,Jean-Marie Lemercier,Bunlong Lay,Timo Gerkmann
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 2351-2364 被引量:101
标识
DOI:10.1109/taslp.2023.3285241
摘要

In this work, we build upon our previous publication and use diffusion-based generative models for speech enhancement. We present a detailed overview of the diffusion process that is based on a stochastic differential equation and delve into an extensive theoretical examination of its implications. Opposed to usual conditional generation tasks, we do not start the reverse process from pure Gaussian noise but from a mixture of noisy speech and Gaussian noise. This matches our forward process which moves from clean speech to noisy speech by including a drift term. We show that this procedure enables using only 30 diffusion steps to generate high-quality clean speech estimates. By adapting the network architecture, we are able to significantly improve the speech enhancement performance, indicating that the network, rather than the formalism, was the main limitation of our original approach. In an extensive cross-dataset evaluation, we show that the improved method can compete with recent discriminative models and achieves better generalization when evaluating on a different corpus than used for training. We complement the results with an instrumental evaluation using real-world noisy recordings and a listening experiment, in which our proposed method is rated best. Examining different sampler configurations for solving the reverse process allows us to balance the performance and computational speed of the proposed method. Moreover, we show that the proposed method is also suitable for dereverberation and thus not limited to additive background noise removal. Code and audio examples are available online 1 https://github.com/sp-uhh/sgmse .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
醋酸柠檬发布了新的文献求助10
刚刚
jingjing完成签到,获得积分20
1秒前
2秒前
beibei发布了新的文献求助10
2秒前
3秒前
1234完成签到,获得积分10
3秒前
bonnie完成签到,获得积分10
3秒前
端庄的紫烟完成签到 ,获得积分10
3秒前
橙神完成签到,获得积分10
3秒前
Jasper应助ACE采纳,获得10
4秒前
夜白应助古枂采纳,获得20
4秒前
顺利的妖妖完成签到 ,获得积分10
5秒前
小德完成签到,获得积分10
5秒前
ww发布了新的文献求助10
6秒前
Shawn完成签到,获得积分10
7秒前
浮游应助ywy采纳,获得10
7秒前
7秒前
7秒前
生动丸子完成签到 ,获得积分10
7秒前
饱满远航完成签到,获得积分10
8秒前
8秒前
Xingkun_li发布了新的文献求助10
8秒前
9秒前
研友_VZG7GZ应助WC采纳,获得10
9秒前
9秒前
lyf发布了新的文献求助10
10秒前
future发布了新的文献求助10
11秒前
11秒前
美好斓发布了新的文献求助80
12秒前
12秒前
王康杰发布了新的文献求助10
13秒前
路人应助wx采纳,获得200
13秒前
汉堡包应助strive采纳,获得10
13秒前
must应助感动城采纳,获得10
13秒前
zzz发布了新的文献求助10
13秒前
Stella应助太阳采纳,获得20
13秒前
有点冷发布了新的文献求助10
14秒前
英俊的铭应助桑葚石榴冰采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352677
求助须知:如何正确求助?哪些是违规求助? 4485481
关于积分的说明 13963212
捐赠科研通 4385463
什么是DOI,文献DOI怎么找? 2409427
邀请新用户注册赠送积分活动 1401828
关于科研通互助平台的介绍 1375439