计算机科学
判别式
语音增强
噪音(视频)
语音识别
一般化
形式主义(音乐)
过程(计算)
人工智能
降噪
数学
视觉艺术
艺术
数学分析
图像(数学)
音乐剧
操作系统
作者
Julius Richter,Simon Welker,Jean-Marie Lemercier,Bunlong Lay,Timo Gerkmann
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing
[Institute of Electrical and Electronics Engineers]
日期:2023-01-01
卷期号:31: 2351-2364
被引量:65
标识
DOI:10.1109/taslp.2023.3285241
摘要
In this work, we build upon our previous publication and use diffusion-based generative models for speech enhancement. We present a detailed overview of the diffusion process that is based on a stochastic differential equation and delve into an extensive theoretical examination of its implications. Opposed to usual conditional generation tasks, we do not start the reverse process from pure Gaussian noise but from a mixture of noisy speech and Gaussian noise. This matches our forward process which moves from clean speech to noisy speech by including a drift term. We show that this procedure enables using only 30 diffusion steps to generate high-quality clean speech estimates. By adapting the network architecture, we are able to significantly improve the speech enhancement performance, indicating that the network, rather than the formalism, was the main limitation of our original approach. In an extensive cross-dataset evaluation, we show that the improved method can compete with recent discriminative models and achieves better generalization when evaluating on a different corpus than used for training. We complement the results with an instrumental evaluation using real-world noisy recordings and a listening experiment, in which our proposed method is rated best. Examining different sampler configurations for solving the reverse process allows us to balance the performance and computational speed of the proposed method. Moreover, we show that the proposed method is also suitable for dereverberation and thus not limited to additive background noise removal. Code and audio examples are available online 1 https://github.com/sp-uhh/sgmse .
科研通智能强力驱动
Strongly Powered by AbleSci AI