Speech Enhancement and Dereverberation With Diffusion-Based Generative Models

计算机科学 判别式 语音增强 噪音(视频) 语音识别 一般化 形式主义(音乐) 过程(计算) 人工智能 降噪 数学 视觉艺术 艺术 数学分析 图像(数学) 音乐剧 操作系统
作者
Julius Richter,Simon Welker,Jean-Marie Lemercier,Bunlong Lay,Timo Gerkmann
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 2351-2364 被引量:101
标识
DOI:10.1109/taslp.2023.3285241
摘要

In this work, we build upon our previous publication and use diffusion-based generative models for speech enhancement. We present a detailed overview of the diffusion process that is based on a stochastic differential equation and delve into an extensive theoretical examination of its implications. Opposed to usual conditional generation tasks, we do not start the reverse process from pure Gaussian noise but from a mixture of noisy speech and Gaussian noise. This matches our forward process which moves from clean speech to noisy speech by including a drift term. We show that this procedure enables using only 30 diffusion steps to generate high-quality clean speech estimates. By adapting the network architecture, we are able to significantly improve the speech enhancement performance, indicating that the network, rather than the formalism, was the main limitation of our original approach. In an extensive cross-dataset evaluation, we show that the improved method can compete with recent discriminative models and achieves better generalization when evaluating on a different corpus than used for training. We complement the results with an instrumental evaluation using real-world noisy recordings and a listening experiment, in which our proposed method is rated best. Examining different sampler configurations for solving the reverse process allows us to balance the performance and computational speed of the proposed method. Moreover, we show that the proposed method is also suitable for dereverberation and thus not limited to additive background noise removal. Code and audio examples are available online 1 https://github.com/sp-uhh/sgmse .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无心发布了新的文献求助10
2秒前
2秒前
深情安青应助Fjun采纳,获得10
2秒前
2秒前
Lee发布了新的文献求助10
3秒前
jia发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
zhaowei完成签到,获得积分10
4秒前
5秒前
呼呼完成签到,获得积分10
5秒前
秦苏箐完成签到 ,获得积分10
5秒前
FGG发布了新的文献求助10
5秒前
6秒前
6秒前
典雅飞飞发布了新的文献求助10
6秒前
zhaowei发布了新的文献求助10
7秒前
拈花一笑完成签到,获得积分20
7秒前
shi hui发布了新的文献求助10
7秒前
搜集达人应助zzy采纳,获得10
7秒前
不倦应助TK采纳,获得10
7秒前
7秒前
AYING完成签到,获得积分20
7秒前
搜集达人应助yozi采纳,获得30
9秒前
木安发布了新的文献求助10
9秒前
10秒前
脑洞疼应助顺心绮兰采纳,获得10
10秒前
愉快的延恶完成签到,获得积分10
11秒前
11秒前
11秒前
orixero应助活泼的电脑采纳,获得10
12秒前
12秒前
Cynthia发布了新的文献求助10
13秒前
光亮萤发布了新的文献求助20
13秒前
共享精神应助陈艳林采纳,获得10
14秒前
小马甲应助坦率寻雪采纳,获得10
14秒前
充电宝应助仙子采纳,获得10
14秒前
飞机发布了新的文献求助30
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193007
求助须知:如何正确求助?哪些是违规求助? 4375799
关于积分的说明 13626640
捐赠科研通 4230400
什么是DOI,文献DOI怎么找? 2320393
邀请新用户注册赠送积分活动 1318798
关于科研通互助平台的介绍 1269105