已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Speech Enhancement and Dereverberation With Diffusion-Based Generative Models

计算机科学 判别式 语音增强 噪音(视频) 语音识别 一般化 形式主义(音乐) 过程(计算) 人工智能 降噪 数学 艺术 数学分析 音乐剧 视觉艺术 图像(数学) 操作系统
作者
Julius Richter,Simon Welker,Jean-Marie Lemercier,Bunlong Lay,Timo Gerkmann
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 2351-2364 被引量:88
标识
DOI:10.1109/taslp.2023.3285241
摘要

In this work, we build upon our previous publication and use diffusion-based generative models for speech enhancement. We present a detailed overview of the diffusion process that is based on a stochastic differential equation and delve into an extensive theoretical examination of its implications. Opposed to usual conditional generation tasks, we do not start the reverse process from pure Gaussian noise but from a mixture of noisy speech and Gaussian noise. This matches our forward process which moves from clean speech to noisy speech by including a drift term. We show that this procedure enables using only 30 diffusion steps to generate high-quality clean speech estimates. By adapting the network architecture, we are able to significantly improve the speech enhancement performance, indicating that the network, rather than the formalism, was the main limitation of our original approach. In an extensive cross-dataset evaluation, we show that the improved method can compete with recent discriminative models and achieves better generalization when evaluating on a different corpus than used for training. We complement the results with an instrumental evaluation using real-world noisy recordings and a listening experiment, in which our proposed method is rated best. Examining different sampler configurations for solving the reverse process allows us to balance the performance and computational speed of the proposed method. Moreover, we show that the proposed method is also suitable for dereverberation and thus not limited to additive background noise removal. Code and audio examples are available online 1 https://github.com/sp-uhh/sgmse .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
菜鸡游泳发布了新的文献求助10
2秒前
SiO2完成签到 ,获得积分0
3秒前
3秒前
君寻完成签到 ,获得积分10
4秒前
4秒前
4秒前
小蘑菇应助babalababa采纳,获得10
5秒前
5秒前
6秒前
中标发布了新的文献求助10
8秒前
8秒前
8秒前
公西凝芙发布了新的文献求助10
10秒前
12秒前
13秒前
13秒前
13秒前
Royal耗子完成签到,获得积分10
15秒前
haobhaobhaob发布了新的文献求助10
16秒前
17秒前
科研通AI5应助豆豆可采纳,获得10
17秒前
18秒前
Royal耗子发布了新的文献求助10
18秒前
慕青应助诺贝尔一直讲采纳,获得30
19秒前
公西凝芙完成签到,获得积分10
19秒前
科研通AI6应助弎夜采纳,获得30
19秒前
langqi发布了新的文献求助10
20秒前
Miya发布了新的文献求助30
20秒前
21秒前
haobhaobhaob完成签到,获得积分10
23秒前
凯蒂发布了新的文献求助10
24秒前
26秒前
哎健身发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
28秒前
momoni完成签到 ,获得积分10
28秒前
优秀的山芙关注了科研通微信公众号
29秒前
30秒前
豆豆可发布了新的文献求助10
32秒前
Olivia发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610031
求助须知:如何正确求助?哪些是违规求助? 4016179
关于积分的说明 12434575
捐赠科研通 3697585
什么是DOI,文献DOI怎么找? 2038909
邀请新用户注册赠送积分活动 1071843
科研通“疑难数据库(出版商)”最低求助积分说明 955542