Speech Enhancement and Dereverberation With Diffusion-Based Generative Models

计算机科学 判别式 语音增强 噪音(视频) 语音识别 一般化 形式主义(音乐) 过程(计算) 人工智能 降噪 数学 视觉艺术 艺术 数学分析 图像(数学) 音乐剧 操作系统
作者
Julius Richter,Simon Welker,Jean-Marie Lemercier,Bunlong Lay,Timo Gerkmann
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 2351-2364 被引量:88
标识
DOI:10.1109/taslp.2023.3285241
摘要

In this work, we build upon our previous publication and use diffusion-based generative models for speech enhancement. We present a detailed overview of the diffusion process that is based on a stochastic differential equation and delve into an extensive theoretical examination of its implications. Opposed to usual conditional generation tasks, we do not start the reverse process from pure Gaussian noise but from a mixture of noisy speech and Gaussian noise. This matches our forward process which moves from clean speech to noisy speech by including a drift term. We show that this procedure enables using only 30 diffusion steps to generate high-quality clean speech estimates. By adapting the network architecture, we are able to significantly improve the speech enhancement performance, indicating that the network, rather than the formalism, was the main limitation of our original approach. In an extensive cross-dataset evaluation, we show that the improved method can compete with recent discriminative models and achieves better generalization when evaluating on a different corpus than used for training. We complement the results with an instrumental evaluation using real-world noisy recordings and a listening experiment, in which our proposed method is rated best. Examining different sampler configurations for solving the reverse process allows us to balance the performance and computational speed of the proposed method. Moreover, we show that the proposed method is also suitable for dereverberation and thus not limited to additive background noise removal. Code and audio examples are available online 1 https://github.com/sp-uhh/sgmse .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张浩发布了新的文献求助10
刚刚
Lucas应助wbh采纳,获得10
刚刚
1秒前
Rondab应助大家的新娘采纳,获得10
2秒前
中和皇极完成签到,获得积分0
3秒前
Finn完成签到,获得积分10
5秒前
6秒前
八里完成签到,获得积分10
6秒前
6秒前
7秒前
悦耳如彤完成签到,获得积分20
7秒前
斯文败类应助GGbound采纳,获得10
8秒前
Finn发布了新的文献求助10
9秒前
小幻发布了新的文献求助80
9秒前
小花排草发布了新的文献求助50
10秒前
Qinghua完成签到,获得积分10
10秒前
Bryan应助小花排草采纳,获得10
13秒前
曹雄发布了新的文献求助10
13秒前
科研通AI5应助满天星采纳,获得10
15秒前
海鲜毒物完成签到,获得积分10
16秒前
17秒前
21秒前
shuiyu完成签到,获得积分10
22秒前
孙淼发布了新的文献求助20
24秒前
24秒前
24秒前
笑一下蒜了完成签到,获得积分10
25秒前
26秒前
26秒前
Better发布了新的文献求助30
26秒前
30秒前
wax发布了新的文献求助10
33秒前
小虾米完成签到,获得积分10
33秒前
34秒前
隐形曼青应助孙淼采纳,获得10
36秒前
37秒前
斜阳正浓发布了新的文献求助10
38秒前
Mine完成签到,获得积分10
39秒前
丘比特应助xml采纳,获得10
41秒前
Jino完成签到,获得积分10
41秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993371
求助须知:如何正确求助?哪些是违规求助? 3534027
关于积分的说明 11264545
捐赠科研通 3273794
什么是DOI,文献DOI怎么找? 1806170
邀请新用户注册赠送积分活动 883016
科研通“疑难数据库(出版商)”最低求助积分说明 809652