已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Speech Enhancement and Dereverberation With Diffusion-Based Generative Models

计算机科学 判别式 语音增强 噪音(视频) 语音识别 一般化 形式主义(音乐) 过程(计算) 人工智能 降噪 数学 艺术 数学分析 音乐剧 视觉艺术 图像(数学) 操作系统
作者
Julius Richter,Simon Welker,Jean-Marie Lemercier,Bunlong Lay,Timo Gerkmann
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 2351-2364 被引量:101
标识
DOI:10.1109/taslp.2023.3285241
摘要

In this work, we build upon our previous publication and use diffusion-based generative models for speech enhancement. We present a detailed overview of the diffusion process that is based on a stochastic differential equation and delve into an extensive theoretical examination of its implications. Opposed to usual conditional generation tasks, we do not start the reverse process from pure Gaussian noise but from a mixture of noisy speech and Gaussian noise. This matches our forward process which moves from clean speech to noisy speech by including a drift term. We show that this procedure enables using only 30 diffusion steps to generate high-quality clean speech estimates. By adapting the network architecture, we are able to significantly improve the speech enhancement performance, indicating that the network, rather than the formalism, was the main limitation of our original approach. In an extensive cross-dataset evaluation, we show that the improved method can compete with recent discriminative models and achieves better generalization when evaluating on a different corpus than used for training. We complement the results with an instrumental evaluation using real-world noisy recordings and a listening experiment, in which our proposed method is rated best. Examining different sampler configurations for solving the reverse process allows us to balance the performance and computational speed of the proposed method. Moreover, we show that the proposed method is also suitable for dereverberation and thus not limited to additive background noise removal. Code and audio examples are available online 1 https://github.com/sp-uhh/sgmse .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
周不游发布了新的文献求助10
2秒前
2秒前
珷玞发布了新的文献求助10
3秒前
4秒前
4秒前
彭于晏应助panyang采纳,获得10
4秒前
852应助嗯嗯采纳,获得10
5秒前
5秒前
8秒前
多情的垣完成签到,获得积分10
8秒前
yuyuyu发布了新的文献求助10
9秒前
英俊的铭应助从嘉采纳,获得10
10秒前
10秒前
11秒前
初夏发布了新的文献求助10
11秒前
12秒前
12秒前
无尽夏完成签到 ,获得积分10
14秒前
14秒前
15秒前
小蘑菇应助mgl采纳,获得10
15秒前
15秒前
zyw发布了新的文献求助10
16秒前
打打应助zzzdx采纳,获得10
17秒前
哈哈哈发布了新的文献求助10
17秒前
kitty发布了新的文献求助10
19秒前
xiaofeiyan完成签到 ,获得积分10
20秒前
22秒前
Orange应助珷玞采纳,获得10
22秒前
蝴蝶飞出了潜水钟完成签到,获得积分10
23秒前
入变完成签到 ,获得积分10
24秒前
一丁雨发布了新的文献求助10
26秒前
26秒前
斯文败类应助kitty采纳,获得10
26秒前
暴躁的梦发布了新的文献求助10
26秒前
26秒前
28秒前
29秒前
Kaaaly关注了科研通微信公众号
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779123
求助须知:如何正确求助?哪些是违规求助? 5645950
关于积分的说明 15451285
捐赠科研通 4910582
什么是DOI,文献DOI怎么找? 2642743
邀请新用户注册赠送积分活动 1590446
关于科研通互助平台的介绍 1544810