Speech Enhancement and Dereverberation With Diffusion-Based Generative Models

计算机科学 判别式 语音增强 噪音(视频) 语音识别 一般化 形式主义(音乐) 过程(计算) 人工智能 降噪 数学 视觉艺术 艺术 数学分析 图像(数学) 音乐剧 操作系统
作者
Julius Richter,Simon Welker,Jean-Marie Lemercier,Bunlong Lay,Timo Gerkmann
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 2351-2364 被引量:65
标识
DOI:10.1109/taslp.2023.3285241
摘要

In this work, we build upon our previous publication and use diffusion-based generative models for speech enhancement. We present a detailed overview of the diffusion process that is based on a stochastic differential equation and delve into an extensive theoretical examination of its implications. Opposed to usual conditional generation tasks, we do not start the reverse process from pure Gaussian noise but from a mixture of noisy speech and Gaussian noise. This matches our forward process which moves from clean speech to noisy speech by including a drift term. We show that this procedure enables using only 30 diffusion steps to generate high-quality clean speech estimates. By adapting the network architecture, we are able to significantly improve the speech enhancement performance, indicating that the network, rather than the formalism, was the main limitation of our original approach. In an extensive cross-dataset evaluation, we show that the improved method can compete with recent discriminative models and achieves better generalization when evaluating on a different corpus than used for training. We complement the results with an instrumental evaluation using real-world noisy recordings and a listening experiment, in which our proposed method is rated best. Examining different sampler configurations for solving the reverse process allows us to balance the performance and computational speed of the proposed method. Moreover, we show that the proposed method is also suitable for dereverberation and thus not limited to additive background noise removal. Code and audio examples are available online 1 https://github.com/sp-uhh/sgmse .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
weiwei发布了新的文献求助10
1秒前
Emma应助负责蜜蜂采纳,获得10
2秒前
清蒸鱼吖发布了新的文献求助10
2秒前
SANG完成签到,获得积分10
3秒前
温柔乌发布了新的文献求助10
3秒前
bkagyin应助vikonk采纳,获得10
4秒前
5秒前
hxy919693123完成签到,获得积分10
5秒前
iiianchen完成签到,获得积分10
6秒前
木木子发布了新的文献求助10
6秒前
6秒前
8秒前
8秒前
苗修杰完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
直率的醉冬完成签到,获得积分20
11秒前
12秒前
Yaoyao发布了新的文献求助50
13秒前
Tiny完成签到 ,获得积分10
13秒前
quanquan发布了新的文献求助10
15秒前
小黄完成签到,获得积分10
15秒前
曾医生发布了新的文献求助10
15秒前
16秒前
深情安青应助超级mxl采纳,获得10
16秒前
ding应助疯大仙外向太清采纳,获得10
16秒前
RTena.发布了新的文献求助10
17秒前
小蘑菇应助飞天817采纳,获得10
18秒前
皇帝的床帘应助ran采纳,获得20
19秒前
20秒前
熊二浪发布了新的文献求助10
20秒前
Tiny发布了新的文献求助10
20秒前
田様应助猪猪hero采纳,获得10
21秒前
飞逝的快乐时光完成签到 ,获得积分10
21秒前
22秒前
22秒前
22秒前
22秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170879
求助须知:如何正确求助?哪些是违规求助? 2821852
关于积分的说明 7936730
捐赠科研通 2482297
什么是DOI,文献DOI怎么找? 1322448
科研通“疑难数据库(出版商)”最低求助积分说明 633639
版权声明 602608