Transfer learning based heart valve disease classification from Phonocardiogram signal

心音图 计算机科学 学习迁移 信号(编程语言) 模式识别(心理学) 人工智能 语音识别 内科学 医学 心脏病学 程序设计语言
作者
Arnab Maity,Akanksha Pathak,Goutam Saha
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:85: 104805-104805 被引量:27
标识
DOI:10.1016/j.bspc.2023.104805
摘要

Physiological conditions that prevent heart valves from functioning precisely to ensure proper blood circulation are known as heart valve disorder (HVD). Detection of HVD is critical as untreated heart valve disease often develops life-threatening cardiac diseases. Typical HVD detection methods, like echocardiography, MRI, and cardiac CT, are costly, complex, and require robust healthcare infrastructure. Although, by simple non-invasive listening to heart sound irregularities, an expert physician can anticipate the signs of HVD from ancient times. Contemporary development suggests that with machine learning-based algorithms, a graphical representation of heart sound, known as the phonocardiogram (PCG), can effectively predict the anomaly in the valvular activity. In recent studies, deep learning-based strategies showed promising results in the PCG classification task but demand extensive resources and training data. This work investigates the merits of transfer learning (TL) using pre-trained convolution neural networks for the automatic PCG classification when data is scarce. With standard time–frequency representations (i.e., spectrogram, log-Mel spectrogram, and scalogram) as input features, audio and image-based pre-trained lightweight models are fine-tuned to categorize the PCG. The proposed YAMNet-based TL method classifies four types of HVD data collected from public heart sound databases and achieves overall accuracy, sensitivity, and specificity of 99.83%, 99.59%, and 99.90%, respectively. Alongside, it classifies the PhysioNet/CinC Challenge 2016 dataset into binary classes with 92.23% accuracy. The study achieves high classification metrics despite data scarcity. It also investigates the proposed method’s computational efficiency and robustness against practical noise contamination for performance evaluation in a possible real-life scenario.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
能干砖家发布了新的文献求助10
2秒前
WU发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
等等发布了新的文献求助10
5秒前
Jasper应助yxy采纳,获得10
5秒前
科研通AI6.1应助xiaoyu采纳,获得10
5秒前
5秒前
looklook发布了新的文献求助10
5秒前
6秒前
Fancy应助bubble采纳,获得30
7秒前
皮代谷发布了新的文献求助10
7秒前
陶逸豪发布了新的文献求助10
7秒前
阿九发布了新的文献求助10
7秒前
abcd完成签到,获得积分20
8秒前
8秒前
今后应助cjh采纳,获得10
8秒前
denny完成签到,获得积分20
9秒前
AAA房地产小王完成签到,获得积分10
9秒前
Meng发布了新的文献求助10
9秒前
9秒前
10秒前
大模型应助jeremyher采纳,获得10
11秒前
11秒前
AN应助WU采纳,获得10
12秒前
香蕉觅云应助WU采纳,获得10
12秒前
12秒前
13秒前
SciGPT应助发发呆采纳,获得10
13秒前
温纲完成签到,获得积分10
14秒前
gavin发布了新的文献求助10
15秒前
Yaseen发布了新的文献求助10
15秒前
15秒前
科研通AI6.1应助柴啊采纳,获得30
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771462
求助须知:如何正确求助?哪些是违规求助? 5591687
关于积分的说明 15427521
捐赠科研通 4904775
什么是DOI,文献DOI怎么找? 2638990
邀请新用户注册赠送积分活动 1586782
关于科研通互助平台的介绍 1541792