已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Transfer learning based heart valve disease classification from Phonocardiogram signal

心音图 计算机科学 学习迁移 信号(编程语言) 模式识别(心理学) 人工智能 语音识别 内科学 医学 心脏病学 程序设计语言
作者
Arnab Maity,Akanksha Pathak,Goutam Saha
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:85: 104805-104805 被引量:27
标识
DOI:10.1016/j.bspc.2023.104805
摘要

Physiological conditions that prevent heart valves from functioning precisely to ensure proper blood circulation are known as heart valve disorder (HVD). Detection of HVD is critical as untreated heart valve disease often develops life-threatening cardiac diseases. Typical HVD detection methods, like echocardiography, MRI, and cardiac CT, are costly, complex, and require robust healthcare infrastructure. Although, by simple non-invasive listening to heart sound irregularities, an expert physician can anticipate the signs of HVD from ancient times. Contemporary development suggests that with machine learning-based algorithms, a graphical representation of heart sound, known as the phonocardiogram (PCG), can effectively predict the anomaly in the valvular activity. In recent studies, deep learning-based strategies showed promising results in the PCG classification task but demand extensive resources and training data. This work investigates the merits of transfer learning (TL) using pre-trained convolution neural networks for the automatic PCG classification when data is scarce. With standard time–frequency representations (i.e., spectrogram, log-Mel spectrogram, and scalogram) as input features, audio and image-based pre-trained lightweight models are fine-tuned to categorize the PCG. The proposed YAMNet-based TL method classifies four types of HVD data collected from public heart sound databases and achieves overall accuracy, sensitivity, and specificity of 99.83%, 99.59%, and 99.90%, respectively. Alongside, it classifies the PhysioNet/CinC Challenge 2016 dataset into binary classes with 92.23% accuracy. The study achieves high classification metrics despite data scarcity. It also investigates the proposed method’s computational efficiency and robustness against practical noise contamination for performance evaluation in a possible real-life scenario.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
孙壮壮发布了新的文献求助10
刚刚
1秒前
一吨好运发布了新的文献求助10
4秒前
canian完成签到,获得积分10
4秒前
故意的小松鼠完成签到,获得积分20
4秒前
飞鸟完成签到,获得积分10
4秒前
一一一完成签到 ,获得积分10
5秒前
Babe1934发布了新的文献求助10
6秒前
周杰完成签到,获得积分10
6秒前
啦咯发布了新的文献求助30
6秒前
周壹完成签到,获得积分20
10秒前
稳重的小之完成签到 ,获得积分10
10秒前
永远完成签到,获得积分10
11秒前
13秒前
test完成签到,获得积分10
13秒前
和谐的汉堡完成签到,获得积分10
14秒前
14秒前
李健的小迷弟应助终陌采纳,获得10
14秒前
陈1发布了新的文献求助10
17秒前
17秒前
小L发布了新的文献求助20
18秒前
钱都来完成签到 ,获得积分10
19秒前
Tohka完成签到 ,获得积分10
19秒前
啦咯完成签到,获得积分20
19秒前
20秒前
潇洒烨磊发布了新的文献求助10
21秒前
22秒前
22秒前
22秒前
GPTea发布了新的文献求助10
22秒前
23秒前
可爱的函函应助阿狸贱贱采纳,获得10
24秒前
SciGPT应助1111采纳,获得10
25秒前
栀璃鸳挽完成签到,获得积分10
25秒前
Talha发布了新的文献求助10
27秒前
终陌发布了新的文献求助10
27秒前
40873完成签到 ,获得积分10
30秒前
Babe1934完成签到,获得积分10
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252840
求助须知:如何正确求助?哪些是违规求助? 4416384
关于积分的说明 13749582
捐赠科研通 4288491
什么是DOI,文献DOI怎么找? 2352947
邀请新用户注册赠送积分活动 1349756
关于科研通互助平台的介绍 1309339