Transfer learning based heart valve disease classification from Phonocardiogram signal

心音图 光谱图 计算机科学 学习迁移 心音 模式识别(心理学) 人工智能 音频信号 稳健性(进化) 卷积神经网络 机器学习 语音识别 医学 心脏病学 基因 生物化学 化学 语音编码
作者
Arnab Maity,Akanksha Pathak,Goutam Saha
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:85: 104805-104805 被引量:11
标识
DOI:10.1016/j.bspc.2023.104805
摘要

Physiological conditions that prevent heart valves from functioning precisely to ensure proper blood circulation are known as heart valve disorder (HVD). Detection of HVD is critical as untreated heart valve disease often develops life-threatening cardiac diseases. Typical HVD detection methods, like echocardiography, MRI, and cardiac CT, are costly, complex, and require robust healthcare infrastructure. Although, by simple non-invasive listening to heart sound irregularities, an expert physician can anticipate the signs of HVD from ancient times. Contemporary development suggests that with machine learning-based algorithms, a graphical representation of heart sound, known as the phonocardiogram (PCG), can effectively predict the anomaly in the valvular activity. In recent studies, deep learning-based strategies showed promising results in the PCG classification task but demand extensive resources and training data. This work investigates the merits of transfer learning (TL) using pre-trained convolution neural networks for the automatic PCG classification when data is scarce. With standard time–frequency representations (i.e., spectrogram, log-Mel spectrogram, and scalogram) as input features, audio and image-based pre-trained lightweight models are fine-tuned to categorize the PCG. The proposed YAMNet-based TL method classifies four types of HVD data collected from public heart sound databases and achieves overall accuracy, sensitivity, and specificity of 99.83%, 99.59%, and 99.90%, respectively. Alongside, it classifies the PhysioNet/CinC Challenge 2016 dataset into binary classes with 92.23% accuracy. The study achieves high classification metrics despite data scarcity. It also investigates the proposed method’s computational efficiency and robustness against practical noise contamination for performance evaluation in a possible real-life scenario.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十颗栗子发布了新的文献求助10
刚刚
张世达完成签到,获得积分20
5秒前
P_Chem完成签到,获得积分10
5秒前
Hello应助Da-ming采纳,获得10
7秒前
ding应助Adeline采纳,获得30
7秒前
李健应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
Progie应助科研通管家采纳,获得10
8秒前
小白应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
8秒前
Akim应助科研通管家采纳,获得10
8秒前
薰硝壤应助正增长采纳,获得10
9秒前
不想当院士的研究生不是好研究生关注了科研通微信公众号
10秒前
加油干给加油干的求助进行了留言
11秒前
阳光完成签到,获得积分10
12秒前
喝到几点发布了新的文献求助10
13秒前
13秒前
仲孙龙吟完成签到,获得积分10
14秒前
Orange应助ylc采纳,获得10
15秒前
Lucas应助Bazinga采纳,获得10
15秒前
汤圆圆儿完成签到,获得积分10
16秒前
18秒前
科研通AI2S应助haonanchen采纳,获得10
18秒前
独特的山槐完成签到 ,获得积分10
19秒前
Ultraman45完成签到,获得积分10
21秒前
22秒前
彩色半烟发布了新的文献求助10
22秒前
22秒前
23秒前
斯文败类应助ylc采纳,获得10
24秒前
24秒前
123应助傲娇的睫毛膏采纳,获得10
25秒前
26秒前
小黑猴ps发布了新的文献求助20
27秒前
28秒前
仲孙龙吟发布了新的文献求助10
28秒前
Da-ming发布了新的文献求助10
28秒前
时然完成签到 ,获得积分10
28秒前
Bazinga发布了新的文献求助10
32秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141401
求助须知:如何正确求助?哪些是违规求助? 2792423
关于积分的说明 7802495
捐赠科研通 2448598
什么是DOI,文献DOI怎么找? 1302633
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237