Transfer learning based heart valve disease classification from Phonocardiogram signal

心音图 计算机科学 学习迁移 信号(编程语言) 模式识别(心理学) 人工智能 语音识别 内科学 医学 心脏病学 程序设计语言
作者
Arnab Maity,Akanksha Pathak,Goutam Saha
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:85: 104805-104805 被引量:27
标识
DOI:10.1016/j.bspc.2023.104805
摘要

Physiological conditions that prevent heart valves from functioning precisely to ensure proper blood circulation are known as heart valve disorder (HVD). Detection of HVD is critical as untreated heart valve disease often develops life-threatening cardiac diseases. Typical HVD detection methods, like echocardiography, MRI, and cardiac CT, are costly, complex, and require robust healthcare infrastructure. Although, by simple non-invasive listening to heart sound irregularities, an expert physician can anticipate the signs of HVD from ancient times. Contemporary development suggests that with machine learning-based algorithms, a graphical representation of heart sound, known as the phonocardiogram (PCG), can effectively predict the anomaly in the valvular activity. In recent studies, deep learning-based strategies showed promising results in the PCG classification task but demand extensive resources and training data. This work investigates the merits of transfer learning (TL) using pre-trained convolution neural networks for the automatic PCG classification when data is scarce. With standard time–frequency representations (i.e., spectrogram, log-Mel spectrogram, and scalogram) as input features, audio and image-based pre-trained lightweight models are fine-tuned to categorize the PCG. The proposed YAMNet-based TL method classifies four types of HVD data collected from public heart sound databases and achieves overall accuracy, sensitivity, and specificity of 99.83%, 99.59%, and 99.90%, respectively. Alongside, it classifies the PhysioNet/CinC Challenge 2016 dataset into binary classes with 92.23% accuracy. The study achieves high classification metrics despite data scarcity. It also investigates the proposed method’s computational efficiency and robustness against practical noise contamination for performance evaluation in a possible real-life scenario.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助like采纳,获得10
刚刚
钱春霞发布了新的文献求助10
1秒前
adb发布了新的文献求助10
2秒前
dsdingding完成签到,获得积分10
3秒前
深情安青应助YFW采纳,获得10
4秒前
kazuma发布了新的文献求助30
5秒前
斯文败类应助cabbage采纳,获得10
6秒前
6秒前
Qwe发布了新的文献求助10
8秒前
Twonej举报whynot求助涉嫌违规
10秒前
10秒前
11秒前
11秒前
jiali发布了新的文献求助10
11秒前
怦然发布了新的文献求助10
15秒前
qin123发布了新的文献求助10
15秒前
YFW发布了新的文献求助10
15秒前
cw完成签到,获得积分10
15秒前
16秒前
小心心鸭完成签到,获得积分10
18秒前
jiali完成签到,获得积分10
18秒前
CCC完成签到,获得积分10
19秒前
20秒前
20秒前
Tin完成签到 ,获得积分10
21秒前
cabbage发布了新的文献求助10
21秒前
22秒前
22秒前
22秒前
YFW完成签到,获得积分20
23秒前
23秒前
23秒前
Twonej应助含糊的靖柏采纳,获得10
24秒前
香芋完成签到,获得积分20
24秒前
25秒前
wangli发布了新的文献求助10
25秒前
prode完成签到 ,获得积分10
26秒前
木子李发布了新的文献求助10
28秒前
cabbage完成签到,获得积分10
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737437
求助须知:如何正确求助?哪些是违规求助? 5372472
关于积分的说明 15335484
捐赠科研通 4880930
什么是DOI,文献DOI怎么找? 2623186
邀请新用户注册赠送积分活动 1571999
关于科研通互助平台的介绍 1528811