Transfer learning based heart valve disease classification from Phonocardiogram signal

心音图 计算机科学 学习迁移 信号(编程语言) 模式识别(心理学) 人工智能 语音识别 内科学 医学 心脏病学 程序设计语言
作者
Arnab Maity,Akanksha Pathak,Goutam Saha
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:85: 104805-104805 被引量:27
标识
DOI:10.1016/j.bspc.2023.104805
摘要

Physiological conditions that prevent heart valves from functioning precisely to ensure proper blood circulation are known as heart valve disorder (HVD). Detection of HVD is critical as untreated heart valve disease often develops life-threatening cardiac diseases. Typical HVD detection methods, like echocardiography, MRI, and cardiac CT, are costly, complex, and require robust healthcare infrastructure. Although, by simple non-invasive listening to heart sound irregularities, an expert physician can anticipate the signs of HVD from ancient times. Contemporary development suggests that with machine learning-based algorithms, a graphical representation of heart sound, known as the phonocardiogram (PCG), can effectively predict the anomaly in the valvular activity. In recent studies, deep learning-based strategies showed promising results in the PCG classification task but demand extensive resources and training data. This work investigates the merits of transfer learning (TL) using pre-trained convolution neural networks for the automatic PCG classification when data is scarce. With standard time–frequency representations (i.e., spectrogram, log-Mel spectrogram, and scalogram) as input features, audio and image-based pre-trained lightweight models are fine-tuned to categorize the PCG. The proposed YAMNet-based TL method classifies four types of HVD data collected from public heart sound databases and achieves overall accuracy, sensitivity, and specificity of 99.83%, 99.59%, and 99.90%, respectively. Alongside, it classifies the PhysioNet/CinC Challenge 2016 dataset into binary classes with 92.23% accuracy. The study achieves high classification metrics despite data scarcity. It also investigates the proposed method’s computational efficiency and robustness against practical noise contamination for performance evaluation in a possible real-life scenario.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蘑菇应助三块石头采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
Kotori完成签到,获得积分10
1秒前
1秒前
慕青应助一只小羊采纳,获得10
2秒前
小六发布了新的文献求助10
2秒前
王玥发布了新的文献求助10
3秒前
Twonej应助iiiau采纳,获得30
3秒前
林淳完成签到,获得积分10
3秒前
毛毛虫发布了新的文献求助10
3秒前
4秒前
蓝天应助涨知识ing采纳,获得10
4秒前
4秒前
老年发布了新的文献求助10
4秒前
ding应助果汁采纳,获得10
4秒前
海的呼唤发布了新的文献求助10
4秒前
jhw发布了新的文献求助10
5秒前
圆锥香蕉应助失眠夏山采纳,获得20
5秒前
6秒前
Xhhaai应助花生油炒花生米采纳,获得10
7秒前
7秒前
李海翔完成签到,获得积分10
8秒前
自觉思萱发布了新的文献求助10
8秒前
8秒前
顾矜应助实验菜菜君采纳,获得20
9秒前
R沫完成签到,获得积分10
9秒前
gu发布了新的文献求助10
9秒前
蓝天应助FEN采纳,获得10
10秒前
Lee发布了新的文献求助10
10秒前
10秒前
大眼完成签到 ,获得积分10
12秒前
12秒前
邢智超完成签到 ,获得积分10
13秒前
斯文败类应助漫画采纳,获得80
13秒前
兴奋棒球完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
爱如少年完成签到,获得积分10
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784155
求助须知:如何正确求助?哪些是违规求助? 5680888
关于积分的说明 15463131
捐赠科研通 4913434
什么是DOI,文献DOI怎么找? 2644642
邀请新用户注册赠送积分活动 1592485
关于科研通互助平台的介绍 1547106