Transfer learning based heart valve disease classification from Phonocardiogram signal

心音图 计算机科学 学习迁移 信号(编程语言) 模式识别(心理学) 人工智能 语音识别 内科学 医学 心脏病学 程序设计语言
作者
Arnab Maity,Akanksha Pathak,Goutam Saha
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:85: 104805-104805 被引量:27
标识
DOI:10.1016/j.bspc.2023.104805
摘要

Physiological conditions that prevent heart valves from functioning precisely to ensure proper blood circulation are known as heart valve disorder (HVD). Detection of HVD is critical as untreated heart valve disease often develops life-threatening cardiac diseases. Typical HVD detection methods, like echocardiography, MRI, and cardiac CT, are costly, complex, and require robust healthcare infrastructure. Although, by simple non-invasive listening to heart sound irregularities, an expert physician can anticipate the signs of HVD from ancient times. Contemporary development suggests that with machine learning-based algorithms, a graphical representation of heart sound, known as the phonocardiogram (PCG), can effectively predict the anomaly in the valvular activity. In recent studies, deep learning-based strategies showed promising results in the PCG classification task but demand extensive resources and training data. This work investigates the merits of transfer learning (TL) using pre-trained convolution neural networks for the automatic PCG classification when data is scarce. With standard time–frequency representations (i.e., spectrogram, log-Mel spectrogram, and scalogram) as input features, audio and image-based pre-trained lightweight models are fine-tuned to categorize the PCG. The proposed YAMNet-based TL method classifies four types of HVD data collected from public heart sound databases and achieves overall accuracy, sensitivity, and specificity of 99.83%, 99.59%, and 99.90%, respectively. Alongside, it classifies the PhysioNet/CinC Challenge 2016 dataset into binary classes with 92.23% accuracy. The study achieves high classification metrics despite data scarcity. It also investigates the proposed method’s computational efficiency and robustness against practical noise contamination for performance evaluation in a possible real-life scenario.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小李李完成签到,获得积分10
1秒前
1秒前
2秒前
芥楠完成签到,获得积分10
2秒前
3秒前
4秒前
科研通AI6应助liu采纳,获得10
7秒前
8秒前
9秒前
10秒前
11秒前
LLL发布了新的文献求助10
12秒前
程天佑发布了新的文献求助10
16秒前
友好天蓝发布了新的文献求助50
16秒前
朴素的士晋完成签到 ,获得积分10
16秒前
天真若云完成签到,获得积分10
17秒前
ivy完成签到,获得积分10
19秒前
虚心的白莲完成签到,获得积分10
19秒前
搜集达人应助尘默采纳,获得20
19秒前
秀丽奎完成签到 ,获得积分10
20秒前
越明年完成签到,获得积分10
20秒前
21秒前
22秒前
王振兴完成签到 ,获得积分10
23秒前
ivy发布了新的文献求助10
23秒前
baidi发布了新的文献求助10
26秒前
gfsuen完成签到 ,获得积分10
26秒前
26秒前
LLL完成签到,获得积分10
27秒前
情怀应助Mistletoe采纳,获得10
28秒前
感动满天发布了新的文献求助10
28秒前
末小皮发布了新的文献求助10
30秒前
罗蒙洛索夫完成签到,获得积分10
30秒前
传奇3应助wujiwuhui采纳,获得10
30秒前
健康幸福的大美女完成签到,获得积分10
31秒前
小蘑菇应助科学宝宝☜采纳,获得10
32秒前
Jasper应助天玄采纳,获得10
32秒前
33秒前
科研通AI6应助ivy采纳,获得10
33秒前
辣辣发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560014
求助须知:如何正确求助?哪些是违规求助? 4645187
关于积分的说明 14674421
捐赠科研通 4586310
什么是DOI,文献DOI怎么找? 2516345
邀请新用户注册赠送积分活动 1490000
关于科研通互助平台的介绍 1460841