亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Transfer learning based heart valve disease classification from Phonocardiogram signal

心音图 计算机科学 学习迁移 信号(编程语言) 模式识别(心理学) 人工智能 语音识别 内科学 医学 心脏病学 程序设计语言
作者
Arnab Maity,Akanksha Pathak,Goutam Saha
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:85: 104805-104805 被引量:27
标识
DOI:10.1016/j.bspc.2023.104805
摘要

Physiological conditions that prevent heart valves from functioning precisely to ensure proper blood circulation are known as heart valve disorder (HVD). Detection of HVD is critical as untreated heart valve disease often develops life-threatening cardiac diseases. Typical HVD detection methods, like echocardiography, MRI, and cardiac CT, are costly, complex, and require robust healthcare infrastructure. Although, by simple non-invasive listening to heart sound irregularities, an expert physician can anticipate the signs of HVD from ancient times. Contemporary development suggests that with machine learning-based algorithms, a graphical representation of heart sound, known as the phonocardiogram (PCG), can effectively predict the anomaly in the valvular activity. In recent studies, deep learning-based strategies showed promising results in the PCG classification task but demand extensive resources and training data. This work investigates the merits of transfer learning (TL) using pre-trained convolution neural networks for the automatic PCG classification when data is scarce. With standard time–frequency representations (i.e., spectrogram, log-Mel spectrogram, and scalogram) as input features, audio and image-based pre-trained lightweight models are fine-tuned to categorize the PCG. The proposed YAMNet-based TL method classifies four types of HVD data collected from public heart sound databases and achieves overall accuracy, sensitivity, and specificity of 99.83%, 99.59%, and 99.90%, respectively. Alongside, it classifies the PhysioNet/CinC Challenge 2016 dataset into binary classes with 92.23% accuracy. The study achieves high classification metrics despite data scarcity. It also investigates the proposed method’s computational efficiency and robustness against practical noise contamination for performance evaluation in a possible real-life scenario.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21秒前
22秒前
27秒前
1分钟前
1分钟前
Mio发布了新的文献求助10
1分钟前
surprise完成签到 ,获得积分10
1分钟前
乐乐应助Mio采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
77完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
热情依白完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
安尔完成签到 ,获得积分10
3分钟前
简单应助司空天德采纳,获得40
3分钟前
Asura完成签到,获得积分10
4分钟前
古月完成签到 ,获得积分10
4分钟前
ABCD完成签到 ,获得积分10
4分钟前
4分钟前
滋滋发布了新的文献求助10
4分钟前
滋滋完成签到,获得积分20
4分钟前
波里舞完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
毛毛发布了新的文献求助10
5分钟前
5分钟前
5分钟前
赘婿应助科研通管家采纳,获得10
5分钟前
5分钟前
Yuanyuan发布了新的文献求助10
5分钟前
6分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788831
求助须知:如何正确求助?哪些是违规求助? 5712404
关于积分的说明 15473943
捐赠科研通 4916818
什么是DOI,文献DOI怎么找? 2646580
邀请新用户注册赠送积分活动 1594269
关于科研通互助平台的介绍 1548687