Predicting Small Molecule Binding Nucleotides in RNA Structures Using RNA Surface Topography

核糖核酸 核苷酸 计算生物学 核酸结构 生物系统 小分子 核酸二级结构 计算机科学 算法 生物物理学 化学 生物 生物化学 基因
作者
Jiaming Gao,Haoquan Liu,Zhuo Chen,Chengwei Zeng,Yunjie Zhao
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (18): 6979-6992
标识
DOI:10.1021/acs.jcim.4c01264
摘要

RNA small molecule interactions play a crucial role in drug discovery and inhibitor design. Identifying RNA small molecule binding nucleotides is essential and requires methods that exhibit a high predictive ability to facilitate drug discovery and inhibitor design. Existing methods can predict the binding nucleotides of simple RNA structures, but it is hard to predict binding nucleotides in complex RNA structures with junctions. To address this limitation, we developed a new deep learning model based on spatial correlation, ZHmolReSTasite, which can accurately predict binding nucleotides of small and large RNA with junctions. We utilize RNA surface topography to consider the spatial correlation, characterizing nucleotides from sequence and tertiary structures to learn a high-level representation. Our method outperforms existing methods for benchmark test sets composed of simple RNA structures, achieving precision values of 72.9% on TE18 and 76.7% on RB9 test sets. For a challenging test set composed of RNA structures with junctions, our method outperforms the second best method by 11.6% in precision. Moreover, ZHmolReSTasite demonstrates robustness regarding the predicted RNA structures. In summary, ZHmolReSTasite successfully incorporates spatial correlation, outperforms previous methods on small and large RNA structures using RNA surface topography, and can provide valuable insights into RNA small molecule prediction and accelerate RNA inhibitor design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李朝霞完成签到,获得积分10
1秒前
cathy-w完成签到,获得积分0
1秒前
zzz发布了新的文献求助10
1秒前
李靖完成签到 ,获得积分10
1秒前
JiaoJiao发布了新的文献求助10
2秒前
2秒前
kyyy完成签到,获得积分10
2秒前
爱上学的小金完成签到 ,获得积分10
2秒前
3秒前
meimei完成签到,获得积分10
3秒前
3秒前
稳重听双完成签到,获得积分10
3秒前
4秒前
123完成签到,获得积分10
5秒前
5秒前
5秒前
悦耳溪流完成签到,获得积分10
6秒前
00发布了新的文献求助10
6秒前
孔刚完成签到 ,获得积分10
6秒前
Sg完成签到,获得积分10
6秒前
wyq完成签到 ,获得积分10
6秒前
kyyy发布了新的文献求助10
7秒前
7秒前
袁同学完成签到,获得积分10
9秒前
9秒前
星星发布了新的文献求助10
9秒前
长青完成签到,获得积分10
10秒前
坚强丹雪完成签到,获得积分10
10秒前
双楠发布了新的文献求助10
10秒前
vernal完成签到 ,获得积分10
10秒前
dxy完成签到,获得积分10
10秒前
10秒前
puppy发布了新的文献求助10
10秒前
Mia完成签到 ,获得积分10
10秒前
傲娇完成签到,获得积分20
10秒前
FLZLC发布了新的文献求助10
11秒前
充电宝应助小米采纳,获得10
11秒前
尹兴亮发布了新的文献求助10
11秒前
11秒前
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960404
求助须知:如何正确求助?哪些是违规求助? 3506557
关于积分的说明 11131183
捐赠科研通 3238768
什么是DOI,文献DOI怎么找? 1789884
邀请新用户注册赠送积分活动 871986
科研通“疑难数据库(出版商)”最低求助积分说明 803118