Rod-Like Tetraphenylethylene-Based Metal–Organic Framework for Ultrasensitive Detection of Neuron-Specific Enolase

电化学发光 发光体 检出限 四苯乙烯 线性范围 化学 配体(生物化学) 发光 纳米技术 材料科学 光电子学 色谱法 荧光 聚集诱导发射 物理 光学 生物化学 受体
作者
Haoran Zhang,Yonghua Yuan,Min Qing,Jing Zhou,Junjie Liu,Lijuan Bai
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:7 (16): 18903-18911 被引量:1
标识
DOI:10.1021/acsanm.4c02657
摘要

The hunt for stable and effective luminous materials has always been a major focus of investigation and research during the development of electrochemiluminescence (ECL). However, numerous challenges persist even in current times. The aggregation-induced emission (AIE) ligand 1,1,2,2-tetra(4-carboxylbiphenyl)ethylene and La3+ were used in this study to create a rod-like metal–organic framework (La-TCBPE-MOF, LTM), which was then constructed into an inventive ECL immunosensor for the ultrasensitive detection of neuron-specific enolase (NSE). LTM showed stronger ECL signals compared to H4TCBPE aggregations, which can be attributed not only to the immobilization of H4TCBPE ligands within the rigid MOF matrix, which restricted free intramolecular rotation and vibration, but also to the reduction of nonradiative transitions. Furthermore, the loading capacity of the H4TCBPE luminophore was significantly boosted by anchoring H4TCBPE into the rigid MOF as a bridging ligand. Consequently, a larger ECL intensity was produced due to the increased amount of H4TCBPE luminophores being stimulated. As anticipated, the fabricated ECL immunosensor exhibited a broad linear range spanning from 100 fg mL–1 to 100 ng mL–1, accompanied by an impressively low limit of detection (LOD) of 21.5 fg mL–1. Moreover, the ECL immunosensor was effectively utilized for measurement in human serum. In summary, this research demonstrated a successful integration of AIE into the field of ECL, enabling rapid, sensitive, and highly precise detection of NSE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
苏兴龙关注了科研通微信公众号
1秒前
1秒前
脑洞疼应助谦让的含海采纳,获得10
1秒前
华华发布了新的文献求助10
1秒前
1秒前
Orange应助命运的X号采纳,获得10
1秒前
云澈完成签到,获得积分10
3秒前
风趣的觅山完成签到,获得积分10
3秒前
打打应助SCI采纳,获得50
3秒前
pinging应助Wang采纳,获得10
3秒前
3秒前
灵巧荆发布了新的文献求助10
4秒前
和谐续完成签到 ,获得积分10
4秒前
李健应助是天使呢采纳,获得10
4秒前
4秒前
5秒前
香菜兔子完成签到,获得积分10
5秒前
茶艺大师づ完成签到,获得积分0
5秒前
蓝愿完成签到,获得积分10
5秒前
6秒前
努力的小狗屁完成签到,获得积分10
6秒前
6秒前
慕青应助彬彬采纳,获得10
7秒前
飘逸蘑菇关注了科研通微信公众号
7秒前
八十关注了科研通微信公众号
8秒前
8秒前
8秒前
9秒前
10秒前
摸鱼摸鱼摸摸鱼完成签到,获得积分10
10秒前
xiaoputaor完成签到 ,获得积分10
11秒前
万能图书馆应助yana采纳,获得20
12秒前
兽医12138完成签到 ,获得积分10
12秒前
苏苏发布了新的文献求助10
12秒前
烯灯完成签到,获得积分10
13秒前
慕青应助哈哈采纳,获得10
13秒前
Ava应助朴素的鸡采纳,获得10
13秒前
852应助沧海泪采纳,获得10
13秒前
tao发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794