Efficient seismic fragility analysis considering uncertainties in structural systems and ground motions

脆弱性 地震动 增量动力分析 地质学 地震学 结构工程 工程类 物理 热力学
作者
Jungho Kim,Taeyong Kim
出处
期刊:Earthquake Engineering & Structural Dynamics [Wiley]
标识
DOI:10.1002/eqe.4254
摘要

Abstract Fragility plays a pivotal role in performance‐based earthquake engineering, which represents the seismic performance of structural systems. To comprehensively understand the structural performance under seismic events, it is necessary to consider uncertainties in the structural model, i.e., epistemic uncertainties. However, considering such uncertainties is challenging due to computational complexity, leading most fragility analyses only to consider the chaotic behavior of ground motions on structural responses, i.e., aleatoric uncertainties. To address this challenge, this study proposes an adaptive algorithm that intertwines with the conventional fragility analysis procedures to consider both aleatoric and epistemic uncertainties. The algorithm introduces Gaussian process‐based metamodels to efficiently consider epistemic uncertainties with a small number of time history analyses. Steel moment‐resisting frame structures and a reinforced concrete building are used to demonstrate the improved efficiency and wide applicability of the proposed method. In each case, the proposed method yields fragility curves consistent with reference solutions but with substantially lower computational effort. Comprehensive discussions are provided regarding ground motion sets, structural types, and definitions of limit‐states to demonstrate the robustness of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shi hui应助宇老师采纳,获得10
1秒前
陈思完成签到,获得积分10
1秒前
SciGPT应助cy采纳,获得10
3秒前
王钰绮完成签到 ,获得积分10
5秒前
无情颖完成签到 ,获得积分10
5秒前
宁静致远完成签到,获得积分10
7秒前
顾矜应助活泼红牛采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
8秒前
风吹麦田应助科研通管家采纳,获得30
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
那时花开应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
wy.he应助科研通管家采纳,获得20
8秒前
SciGPT应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
标致的方盒完成签到,获得积分10
9秒前
蜘猪侠zx应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
那时花开应助科研通管家采纳,获得10
9秒前
大力契应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
9秒前
桐桐应助科研通管家采纳,获得30
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378758
求助须知:如何正确求助?哪些是违规求助? 4503204
关于积分的说明 14015274
捐赠科研通 4411911
什么是DOI,文献DOI怎么找? 2423541
邀请新用户注册赠送积分活动 1416486
关于科研通互助平台的介绍 1393925