已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

I see artifacts: ICA-based EEG artifact removal does not improve deep network decoding across three BCI tasks

计算机科学 脑电图 独立成分分析 人工智能 管道(软件) 解码方法 模式识别(心理学) 卷积神经网络 工件(错误) 语音识别 算法 心理学 精神科 程序设计语言
作者
Taeho Kang,Yiyu Chen,Christian Wallraven
出处
期刊:Journal of Neural Engineering [IOP Publishing]
标识
DOI:10.1088/1741-2552/ad788e
摘要

Abstract \textit{Objective.}
In this paper, we conduct a detailed investigation on the effect of IC-based noise rejection methods in neural network classifier-based decoding of electroencephalography (EEG) data in different task datasets.
\textit{Approach.}
We apply a pipeline matrix of two popular different Independent Component (IC) decomposition methods (Infomax, AMICA) with three different component rejection strategies (none, ICLabel, and MARA) on three different EEG datasets (Motor imagery, long-term memory formation, and visual memory). We cross-validate processed data from each pipeline with three architectures commonly used for EEG classification (two convolutional neural networks (CNN) and one long short term memory (LSTM) based model. We compare decoding performances on within-participant and within-dataset levels. 
\textit{Main Results.}
Our results show that the benefit from using IC-based noise rejection for decoding analyses is at best minor, as component-rejected data did not show consistently better performance than data without rejections---especially given the significant computational resources required for ICA computations.
\textit{Significance.}
With ever growing emphasis on transparency and reproducibility, as well as the obvious benefits arising from streamlined processing of large-scale datasets, there has been an increased interest in automated methods for pre-processing EEG data. One prominent part of such pre-processing pipelines consists of identifying and potentially removing artifacts arising from extraneous sources. This is typically done via Independent Component (IC) based correction for which numerous methods have been proposed, differing not only in the decomposition of the raw data into ICs, but also in how they reject the computed ICs. While the benefits of these methods are well established in univariate statistical analyses, it is unclear whether they help in multivariate scenarios, and specifically in neural network based decoding studies. As computational costs for pre-processing large-scale datasets are considerable, it is important to consider whether the tradeoff between model performance and available resources is worth the effort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周运完成签到 ,获得积分10
刚刚
zeice完成签到 ,获得积分10
1秒前
ryanfeng完成签到,获得积分0
4秒前
徐悦月发布了新的文献求助10
4秒前
888发布了新的文献求助10
5秒前
牛牛完成签到 ,获得积分10
8秒前
9秒前
吴兰田完成签到,获得积分10
10秒前
所所应助yyh采纳,获得10
11秒前
Novice6354完成签到 ,获得积分10
12秒前
汉堡包应助888采纳,获得10
13秒前
Mancy完成签到 ,获得积分10
14秒前
tsttst完成签到,获得积分10
14秒前
我是老大应助科研白采纳,获得10
15秒前
Alan发布了新的文献求助30
15秒前
15秒前
18秒前
欢呼宛秋完成签到,获得积分10
18秒前
fantianhui完成签到 ,获得积分10
18秒前
18秒前
Joanne完成签到 ,获得积分10
19秒前
20秒前
20秒前
skycool完成签到,获得积分10
20秒前
欣慰书白发布了新的文献求助10
22秒前
美味又健康完成签到 ,获得积分10
23秒前
Lijiahui完成签到 ,获得积分10
23秒前
idiom完成签到 ,获得积分10
24秒前
小小温发布了新的文献求助10
25秒前
landiao完成签到,获得积分10
27秒前
科研打怪升级中完成签到,获得积分10
27秒前
Alan完成签到,获得积分20
28秒前
chenwuhao完成签到 ,获得积分10
30秒前
l_liu完成签到,获得积分10
31秒前
流星雨完成签到 ,获得积分10
32秒前
小凯完成签到 ,获得积分10
34秒前
斯文败类应助Sunny采纳,获得10
34秒前
好好完成签到,获得积分10
35秒前
kai chen完成签到 ,获得积分0
35秒前
Ming完成签到 ,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5063184
求助须知:如何正确求助?哪些是违规求助? 4286873
关于积分的说明 13358002
捐赠科研通 4104880
什么是DOI,文献DOI怎么找? 2247686
邀请新用户注册赠送积分活动 1253213
关于科研通互助平台的介绍 1184234