I see artifacts: ICA-based EEG artifact removal does not improve deep network decoding across three BCI tasks

计算机科学 脑电图 独立成分分析 人工智能 管道(软件) 解码方法 模式识别(心理学) 卷积神经网络 工件(错误) 语音识别 算法 心理学 精神科 程序设计语言
作者
Taeho Kang,Yiyu Chen,Christian Wallraven
出处
期刊:Journal of Neural Engineering [IOP Publishing]
标识
DOI:10.1088/1741-2552/ad788e
摘要

Abstract \textit{Objective.}
In this paper, we conduct a detailed investigation on the effect of IC-based noise rejection methods in neural network classifier-based decoding of electroencephalography (EEG) data in different task datasets.
\textit{Approach.}
We apply a pipeline matrix of two popular different Independent Component (IC) decomposition methods (Infomax, AMICA) with three different component rejection strategies (none, ICLabel, and MARA) on three different EEG datasets (Motor imagery, long-term memory formation, and visual memory). We cross-validate processed data from each pipeline with three architectures commonly used for EEG classification (two convolutional neural networks (CNN) and one long short term memory (LSTM) based model. We compare decoding performances on within-participant and within-dataset levels. 
\textit{Main Results.}
Our results show that the benefit from using IC-based noise rejection for decoding analyses is at best minor, as component-rejected data did not show consistently better performance than data without rejections---especially given the significant computational resources required for ICA computations.
\textit{Significance.}
With ever growing emphasis on transparency and reproducibility, as well as the obvious benefits arising from streamlined processing of large-scale datasets, there has been an increased interest in automated methods for pre-processing EEG data. One prominent part of such pre-processing pipelines consists of identifying and potentially removing artifacts arising from extraneous sources. This is typically done via Independent Component (IC) based correction for which numerous methods have been proposed, differing not only in the decomposition of the raw data into ICs, but also in how they reject the computed ICs. While the benefits of these methods are well established in univariate statistical analyses, it is unclear whether they help in multivariate scenarios, and specifically in neural network based decoding studies. As computational costs for pre-processing large-scale datasets are considerable, it is important to consider whether the tradeoff between model performance and available resources is worth the effort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zy完成签到,获得积分20
1秒前
小小申完成签到,获得积分10
1秒前
1秒前
海豚发布了新的文献求助10
1秒前
1秒前
汉堡包应助WANG.采纳,获得10
2秒前
dk完成签到,获得积分20
2秒前
2秒前
Wjh完成签到,获得积分10
3秒前
wanci应助随想采纳,获得10
3秒前
久桃完成签到,获得积分10
3秒前
星际帅帅完成签到,获得积分10
3秒前
山西球迷发布了新的文献求助10
3秒前
甜甜弘文发布了新的文献求助10
4秒前
4秒前
xixi发布了新的文献求助10
4秒前
5秒前
Lv发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
Owen应助菠萝李采纳,获得10
6秒前
6秒前
俞跃完成签到,获得积分10
6秒前
知不知发布了新的文献求助10
6秒前
natmed应助milka采纳,获得20
6秒前
黄义发布了新的文献求助10
6秒前
xu完成签到,获得积分10
7秒前
Inory007完成签到,获得积分10
7秒前
tianmafei发布了新的文献求助10
7秒前
8秒前
8秒前
Owen应助盛欢采纳,获得10
9秒前
Nano完成签到,获得积分10
9秒前
10秒前
SciGPT应助速速來電采纳,获得10
10秒前
新乔完成签到,获得积分10
10秒前
旺旺碎冰冰完成签到,获得积分10
10秒前
黄嘉慧完成签到 ,获得积分10
10秒前
甜甜弘文完成签到,获得积分20
11秒前
寒冷的沛珊完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483374
求助须知:如何正确求助?哪些是违规求助? 4584081
关于积分的说明 14394500
捐赠科研通 4513704
什么是DOI,文献DOI怎么找? 2473645
邀请新用户注册赠送积分活动 1459635
关于科研通互助平台的介绍 1433108