亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

I see artifacts: ICA-based EEG artifact removal does not improve deep network decoding across three BCI tasks

计算机科学 脑电图 独立成分分析 人工智能 管道(软件) 解码方法 模式识别(心理学) 卷积神经网络 工件(错误) 语音识别 算法 心理学 精神科 程序设计语言
作者
Taeho Kang,Yiyu Chen,Christian Wallraven
出处
期刊:Journal of Neural Engineering [IOP Publishing]
标识
DOI:10.1088/1741-2552/ad788e
摘要

Abstract \textit{Objective.}
In this paper, we conduct a detailed investigation on the effect of IC-based noise rejection methods in neural network classifier-based decoding of electroencephalography (EEG) data in different task datasets.
\textit{Approach.}
We apply a pipeline matrix of two popular different Independent Component (IC) decomposition methods (Infomax, AMICA) with three different component rejection strategies (none, ICLabel, and MARA) on three different EEG datasets (Motor imagery, long-term memory formation, and visual memory). We cross-validate processed data from each pipeline with three architectures commonly used for EEG classification (two convolutional neural networks (CNN) and one long short term memory (LSTM) based model. We compare decoding performances on within-participant and within-dataset levels. 
\textit{Main Results.}
Our results show that the benefit from using IC-based noise rejection for decoding analyses is at best minor, as component-rejected data did not show consistently better performance than data without rejections---especially given the significant computational resources required for ICA computations.
\textit{Significance.}
With ever growing emphasis on transparency and reproducibility, as well as the obvious benefits arising from streamlined processing of large-scale datasets, there has been an increased interest in automated methods for pre-processing EEG data. One prominent part of such pre-processing pipelines consists of identifying and potentially removing artifacts arising from extraneous sources. This is typically done via Independent Component (IC) based correction for which numerous methods have been proposed, differing not only in the decomposition of the raw data into ICs, but also in how they reject the computed ICs. While the benefits of these methods are well established in univariate statistical analyses, it is unclear whether they help in multivariate scenarios, and specifically in neural network based decoding studies. As computational costs for pre-processing large-scale datasets are considerable, it is important to consider whether the tradeoff between model performance and available resources is worth the effort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谦也静熵完成签到,获得积分10
42秒前
通科研完成签到 ,获得积分10
45秒前
2分钟前
andrele发布了新的文献求助10
2分钟前
陈媛发布了新的文献求助10
3分钟前
sasa发布了新的文献求助10
3分钟前
sasa完成签到,获得积分10
3分钟前
满地枫叶完成签到,获得积分20
4分钟前
joanna完成签到,获得积分10
4分钟前
满地枫叶发布了新的文献求助10
4分钟前
4分钟前
M先生完成签到,获得积分10
4分钟前
5分钟前
5分钟前
tlx发布了新的文献求助10
5分钟前
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
小圆圈发布了新的文献求助30
6分钟前
兴奋的宛亦完成签到,获得积分20
6分钟前
zhanglongfei发布了新的文献求助10
6分钟前
6分钟前
小圆圈发布了新的文献求助10
6分钟前
7分钟前
小圆圈发布了新的文献求助10
7分钟前
李健的小迷弟应助小圆圈采纳,获得10
7分钟前
7分钟前
冬瓜排骨养生汤完成签到,获得积分10
7分钟前
8分钟前
小圆圈发布了新的文献求助10
8分钟前
vantie完成签到 ,获得积分10
8分钟前
9分钟前
zhanglongfei完成签到,获得积分10
9分钟前
Luis发布了新的文献求助10
9分钟前
11分钟前
11分钟前
北陆玄枵发布了新的文献求助10
11分钟前
11分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150609
求助须知:如何正确求助?哪些是违规求助? 2802008
关于积分的说明 7846050
捐赠科研通 2459372
什么是DOI,文献DOI怎么找? 1309219
科研通“疑难数据库(出版商)”最低求助积分说明 628696
版权声明 601757