I see artifacts: ICA-based EEG artifact removal does not improve deep network decoding across three BCI tasks

计算机科学 脑电图 独立成分分析 人工智能 管道(软件) 解码方法 模式识别(心理学) 卷积神经网络 工件(错误) 语音识别 算法 心理学 精神科 程序设计语言
作者
Taeho Kang,Yiyu Chen,Christian Wallraven
出处
期刊:Journal of Neural Engineering [IOP Publishing]
标识
DOI:10.1088/1741-2552/ad788e
摘要

Abstract \textit{Objective.}
In this paper, we conduct a detailed investigation on the effect of IC-based noise rejection methods in neural network classifier-based decoding of electroencephalography (EEG) data in different task datasets.
\textit{Approach.}
We apply a pipeline matrix of two popular different Independent Component (IC) decomposition methods (Infomax, AMICA) with three different component rejection strategies (none, ICLabel, and MARA) on three different EEG datasets (Motor imagery, long-term memory formation, and visual memory). We cross-validate processed data from each pipeline with three architectures commonly used for EEG classification (two convolutional neural networks (CNN) and one long short term memory (LSTM) based model. We compare decoding performances on within-participant and within-dataset levels. 
\textit{Main Results.}
Our results show that the benefit from using IC-based noise rejection for decoding analyses is at best minor, as component-rejected data did not show consistently better performance than data without rejections---especially given the significant computational resources required for ICA computations.
\textit{Significance.}
With ever growing emphasis on transparency and reproducibility, as well as the obvious benefits arising from streamlined processing of large-scale datasets, there has been an increased interest in automated methods for pre-processing EEG data. One prominent part of such pre-processing pipelines consists of identifying and potentially removing artifacts arising from extraneous sources. This is typically done via Independent Component (IC) based correction for which numerous methods have been proposed, differing not only in the decomposition of the raw data into ICs, but also in how they reject the computed ICs. While the benefits of these methods are well established in univariate statistical analyses, it is unclear whether they help in multivariate scenarios, and specifically in neural network based decoding studies. As computational costs for pre-processing large-scale datasets are considerable, it is important to consider whether the tradeoff between model performance and available resources is worth the effort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
manggggo应助阳光念桃采纳,获得10
1秒前
帅气的蚊子完成签到,获得积分20
3秒前
MeSs完成签到 ,获得积分10
3秒前
全焱发布了新的文献求助10
3秒前
刘善宁完成签到,获得积分10
5秒前
5秒前
荔刻UTD关注了科研通微信公众号
7秒前
10秒前
研途完成签到,获得积分10
11秒前
zpj完成签到 ,获得积分10
13秒前
16秒前
梧桐发布了新的文献求助10
18秒前
18秒前
18秒前
kiki发布了新的文献求助10
20秒前
manggggo应助博修采纳,获得10
22秒前
霍冰旋完成签到,获得积分10
23秒前
天天快乐应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
23秒前
23秒前
23秒前
23秒前
24秒前
25秒前
JamesPei应助荔刻UTD采纳,获得10
25秒前
善学以致用应助霍冰旋采纳,获得10
29秒前
32秒前
飘逸的凝荷完成签到,获得积分10
33秒前
酷波er应助SinaiPen采纳,获得10
35秒前
35秒前
hqq发布了新的文献求助30
36秒前
无花果应助hyfwkd采纳,获得10
37秒前
37秒前
37秒前
荔刻UTD发布了新的文献求助10
40秒前
40秒前
量子星尘发布了新的文献求助10
40秒前
热木发布了新的文献求助10
41秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961075
求助须知:如何正确求助?哪些是违规求助? 3507282
关于积分的说明 11135478
捐赠科研通 3239777
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872379
科研通“疑难数据库(出版商)”最低求助积分说明 803150