I see artifacts: ICA-based EEG artifact removal does not improve deep network decoding across three BCI tasks

计算机科学 脑电图 独立成分分析 人工智能 管道(软件) 解码方法 模式识别(心理学) 卷积神经网络 工件(错误) 语音识别 算法 心理学 精神科 程序设计语言
作者
Taeho Kang,Yiyu Chen,Christian Wallraven
出处
期刊:Journal of Neural Engineering [IOP Publishing]
标识
DOI:10.1088/1741-2552/ad788e
摘要

Abstract \textit{Objective.}
In this paper, we conduct a detailed investigation on the effect of IC-based noise rejection methods in neural network classifier-based decoding of electroencephalography (EEG) data in different task datasets.
\textit{Approach.}
We apply a pipeline matrix of two popular different Independent Component (IC) decomposition methods (Infomax, AMICA) with three different component rejection strategies (none, ICLabel, and MARA) on three different EEG datasets (Motor imagery, long-term memory formation, and visual memory). We cross-validate processed data from each pipeline with three architectures commonly used for EEG classification (two convolutional neural networks (CNN) and one long short term memory (LSTM) based model. We compare decoding performances on within-participant and within-dataset levels. 
\textit{Main Results.}
Our results show that the benefit from using IC-based noise rejection for decoding analyses is at best minor, as component-rejected data did not show consistently better performance than data without rejections---especially given the significant computational resources required for ICA computations.
\textit{Significance.}
With ever growing emphasis on transparency and reproducibility, as well as the obvious benefits arising from streamlined processing of large-scale datasets, there has been an increased interest in automated methods for pre-processing EEG data. One prominent part of such pre-processing pipelines consists of identifying and potentially removing artifacts arising from extraneous sources. This is typically done via Independent Component (IC) based correction for which numerous methods have been proposed, differing not only in the decomposition of the raw data into ICs, but also in how they reject the computed ICs. While the benefits of these methods are well established in univariate statistical analyses, it is unclear whether they help in multivariate scenarios, and specifically in neural network based decoding studies. As computational costs for pre-processing large-scale datasets are considerable, it is important to consider whether the tradeoff between model performance and available resources is worth the effort.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虾虾完成签到,获得积分10
刚刚
MM发布了新的文献求助10
1秒前
科研通AI6应助暴发户采纳,获得10
1秒前
十三完成签到,获得积分10
1秒前
1秒前
xtlx发布了新的文献求助10
1秒前
共享精神应助烟雾镜采纳,获得10
2秒前
英姑应助Nnnnnn采纳,获得10
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
橙子发布了新的文献求助10
3秒前
taohr发布了新的文献求助80
4秒前
4秒前
土木搬砖法律完成签到,获得积分10
5秒前
5秒前
今后应助郑大钱采纳,获得10
5秒前
5秒前
shadow完成签到 ,获得积分10
6秒前
6秒前
yuyijk发布了新的文献求助10
7秒前
yuan发布了新的文献求助10
7秒前
7秒前
7秒前
ivy完成签到,获得积分10
8秒前
8秒前
9秒前
张露发布了新的文献求助10
9秒前
林家小弟完成签到 ,获得积分10
9秒前
李永成完成签到,获得积分10
9秒前
10秒前
洁净靳关注了科研通微信公众号
11秒前
迅速的夜雪完成签到,获得积分10
11秒前
英姑应助Nnnnnn采纳,获得10
11秒前
科研通AI6应助翁文倩采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Lectures in probability theory and mathematical statistics - 3rd Edition 500
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5597618
求助须知:如何正确求助?哪些是违规求助? 4683110
关于积分的说明 14828504
捐赠科研通 4661108
什么是DOI,文献DOI怎么找? 2536751
邀请新用户注册赠送积分活动 1504315
关于科研通互助平台的介绍 1470215