I see artifacts: ICA-based EEG artifact removal does not improve deep network decoding across three BCI tasks

计算机科学 脑电图 独立成分分析 人工智能 管道(软件) 解码方法 模式识别(心理学) 卷积神经网络 工件(错误) 语音识别 算法 心理学 精神科 程序设计语言
作者
Taeho Kang,Yiyu Chen,Christian Wallraven
出处
期刊:Journal of Neural Engineering [IOP Publishing]
标识
DOI:10.1088/1741-2552/ad788e
摘要

Abstract \textit{Objective.}
In this paper, we conduct a detailed investigation on the effect of IC-based noise rejection methods in neural network classifier-based decoding of electroencephalography (EEG) data in different task datasets.
\textit{Approach.}
We apply a pipeline matrix of two popular different Independent Component (IC) decomposition methods (Infomax, AMICA) with three different component rejection strategies (none, ICLabel, and MARA) on three different EEG datasets (Motor imagery, long-term memory formation, and visual memory). We cross-validate processed data from each pipeline with three architectures commonly used for EEG classification (two convolutional neural networks (CNN) and one long short term memory (LSTM) based model. We compare decoding performances on within-participant and within-dataset levels. 
\textit{Main Results.}
Our results show that the benefit from using IC-based noise rejection for decoding analyses is at best minor, as component-rejected data did not show consistently better performance than data without rejections---especially given the significant computational resources required for ICA computations.
\textit{Significance.}
With ever growing emphasis on transparency and reproducibility, as well as the obvious benefits arising from streamlined processing of large-scale datasets, there has been an increased interest in automated methods for pre-processing EEG data. One prominent part of such pre-processing pipelines consists of identifying and potentially removing artifacts arising from extraneous sources. This is typically done via Independent Component (IC) based correction for which numerous methods have been proposed, differing not only in the decomposition of the raw data into ICs, but also in how they reject the computed ICs. While the benefits of these methods are well established in univariate statistical analyses, it is unclear whether they help in multivariate scenarios, and specifically in neural network based decoding studies. As computational costs for pre-processing large-scale datasets are considerable, it is important to consider whether the tradeoff between model performance and available resources is worth the effort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
读研好难发布了新的文献求助10
刚刚
Adian完成签到,获得积分10
1秒前
Huaiman完成签到,获得积分10
1秒前
OvO完成签到,获得积分10
1秒前
expuery完成签到,获得积分10
1秒前
sunwending发布了新的文献求助10
1秒前
蒋时晏应助Lam采纳,获得30
2秒前
充电宝应助西子阳采纳,获得10
3秒前
OvO发布了新的文献求助10
3秒前
嗨皮y完成签到 ,获得积分20
3秒前
科研通AI2S应助majf采纳,获得10
4秒前
不知道叫什么完成签到,获得积分10
4秒前
zhaomr完成签到,获得积分10
4秒前
4秒前
4秒前
平常的擎宇完成签到,获得积分10
5秒前
Hello应助白华苍松采纳,获得10
5秒前
碳土不凡发布了新的文献求助10
6秒前
耍酷花卷完成签到,获得积分10
6秒前
小丛完成签到 ,获得积分10
6秒前
6秒前
LZZ完成签到,获得积分10
6秒前
小木虫完成签到,获得积分10
7秒前
小二郎应助无情山水采纳,获得10
7秒前
7秒前
大晨发布了新的文献求助10
7秒前
赖道之发布了新的文献求助10
8秒前
8秒前
1111发布了新的文献求助10
8秒前
坤坤发布了新的文献求助10
8秒前
酷波er应助包容的剑采纳,获得10
8秒前
9秒前
9秒前
genoy完成签到,获得积分10
9秒前
乔乔完成签到,获得积分10
9秒前
吾问无为谓完成签到,获得积分20
11秒前
11秒前
11秒前
花椒泡茶完成签到,获得积分10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762