Identification of genomic alteration and prognosis using pathomics-based artificial intelligence in oral leukoplakia and head and neck squamous cell carcinoma: A multicenter experimental study

医学 头颈部鳞状细胞癌 基底细胞 头颈部 肿瘤科 内科学 鉴定(生物学) 头颈部癌 病理 外科 癌症 植物 生物
作者
Xinjia Cai,Chao-Ran Peng,Yingying Cui,Long Li,Mingwei Huang,Heyu Zhang,Jianyun Zhang,Tiejun Li
出处
期刊:International Journal of Surgery [Elsevier]
被引量:1
标识
DOI:10.1097/js9.0000000000002077
摘要

Background: Loss of chromosome 9p is an important biomarker in the malignant transformation of oral leukoplakia (OLK) to head and neck squamous cell carcinoma (HNSCC), and is associated with the prognosis of HNSCC patients. However, various challenges have prevented 9p loss from being assessed in clinical practice. The objective of this study was to develop a pathomics-based artificial intelligence (AI) model for the rapid and cost-effective prediction of 9p loss (9PLP). Materials and Methods: 333 OLK cases were retrospectively collected with hematoxylin and eosin (H&E)-stained whole slide images and genomic alteration data from multicenter cohorts to develop the genomic alteration prediction AI model. They were divided into a training dataset (n=217), a validation dataset (n=93), and an external testing dataset (n=23). The latest Transformer method and XGBoost algorithm were combined to develop the 9PLP model. The AI model was further applied and validated in two multicenter HNSCC datasets (n=42, n=365, respectively). Moreover, the combination of 9PLP with clinicopathological parameters was used to develop a nomogram model for assessing HNSCC patient prognosis. Results: 9PLP could predict chromosome 9p loss rapidly and effectively using both OLK and HNSCC images, with the area under the curve achieving 0.890 and 0.825, respectively. Furthermore, the predictive model showed high accuracy in HNSCC patient prognosis assessment (the area under the curve was 0.739 for 1-year prediction, 0.705 for 3-year prediction, and 0.691 for 5-year prediction). Conclusion: To the best of our knowledge, this study developed the first genomic alteration prediction deep learning model in OLK and HNSCC. This novel AI model could predict 9p loss and assess patient prognosis by identifying pathomics features in H&E-stained images with good performance. In the future, the 9PLP model may potentially contribute to better clinical management of OLK and HNSCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
星辰大海应助Spy_R采纳,获得10
1秒前
糖果屋完成签到,获得积分20
2秒前
2秒前
3秒前
Hongyt发布了新的文献求助10
4秒前
赵三仟完成签到,获得积分10
4秒前
xxx完成签到 ,获得积分10
4秒前
Joy发布了新的文献求助10
4秒前
xiao123发布了新的文献求助10
5秒前
5秒前
mmccc1发布了新的文献求助30
5秒前
饲养员应助hhh采纳,获得10
5秒前
niakburket给niakburket的求助进行了留言
5秒前
XD完成签到,获得积分10
6秒前
7秒前
NexusExplorer应助大气小天鹅采纳,获得10
7秒前
小二郎应助夏小胖采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
LouieHuang发布了新的文献求助30
8秒前
诗雨桐完成签到,获得积分10
8秒前
YeXiaoqing发布了新的文献求助10
8秒前
zzz完成签到,获得积分10
9秒前
Brightan完成签到,获得积分10
9秒前
科目三应助解之采纳,获得10
9秒前
苏苏发布了新的文献求助10
11秒前
11秒前
Ava应助clueless采纳,获得10
12秒前
gugu完成签到,获得积分10
13秒前
shinble发布了新的文献求助100
13秒前
吉吉完成签到,获得积分10
14秒前
wanci应助lc339采纳,获得10
14秒前
和谐雨竹完成签到,获得积分10
15秒前
啊啊啊啊发布了新的文献求助20
15秒前
梦槐应助多喝水采纳,获得20
15秒前
尼nic克完成签到 ,获得积分10
16秒前
朴素的一曲完成签到,获得积分10
16秒前
16秒前
在水一方应助虚拟的人英采纳,获得10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5416582
求助须知:如何正确求助?哪些是违规求助? 4532793
关于积分的说明 14136478
捐赠科研通 4448679
什么是DOI,文献DOI怎么找? 2440430
邀请新用户注册赠送积分活动 1432216
关于科研通互助平台的介绍 1409793