Identification of genomic alteration and prognosis using pathomics-based artificial intelligence in oral leukoplakia and head and neck squamous cell carcinoma: A multicenter experimental study

医学 头颈部鳞状细胞癌 基底细胞 头颈部 肿瘤科 内科学 鉴定(生物学) 头颈部癌 病理 外科 癌症 植物 生物
作者
Xinjia Cai,Chao-Ran Peng,Yingying Cui,Long Li,Mingwei Huang,Heyu Zhang,Jianyun Zhang,Tiejun Li
出处
期刊:International Journal of Surgery [Wolters Kluwer]
被引量:1
标识
DOI:10.1097/js9.0000000000002077
摘要

Background: Loss of chromosome 9p is an important biomarker in the malignant transformation of oral leukoplakia (OLK) to head and neck squamous cell carcinoma (HNSCC), and is associated with the prognosis of HNSCC patients. However, various challenges have prevented 9p loss from being assessed in clinical practice. The objective of this study was to develop a pathomics-based artificial intelligence (AI) model for the rapid and cost-effective prediction of 9p loss (9PLP). Materials and Methods: 333 OLK cases were retrospectively collected with hematoxylin and eosin (H&E)-stained whole slide images and genomic alteration data from multicenter cohorts to develop the genomic alteration prediction AI model. They were divided into a training dataset (n=217), a validation dataset (n=93), and an external testing dataset (n=23). The latest Transformer method and XGBoost algorithm were combined to develop the 9PLP model. The AI model was further applied and validated in two multicenter HNSCC datasets (n=42, n=365, respectively). Moreover, the combination of 9PLP with clinicopathological parameters was used to develop a nomogram model for assessing HNSCC patient prognosis. Results: 9PLP could predict chromosome 9p loss rapidly and effectively using both OLK and HNSCC images, with the area under the curve achieving 0.890 and 0.825, respectively. Furthermore, the predictive model showed high accuracy in HNSCC patient prognosis assessment (the area under the curve was 0.739 for 1-year prediction, 0.705 for 3-year prediction, and 0.691 for 5-year prediction). Conclusion: To the best of our knowledge, this study developed the first genomic alteration prediction deep learning model in OLK and HNSCC. This novel AI model could predict 9p loss and assess patient prognosis by identifying pathomics features in H&E-stained images with good performance. In the future, the 9PLP model may potentially contribute to better clinical management of OLK and HNSCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
高冷发布了新的文献求助10
1秒前
丘比特应助ZZY采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
jerry完成签到,获得积分10
3秒前
3秒前
权归尘发布了新的文献求助10
4秒前
搜集达人应助Natua采纳,获得10
5秒前
5秒前
6秒前
6秒前
7秒前
panpan发布了新的文献求助10
7秒前
7秒前
42blink发布了新的文献求助10
7秒前
8秒前
mjq发布了新的文献求助10
9秒前
ming完成签到,获得积分10
10秒前
彭于晏应助Ki_Ayasato采纳,获得10
11秒前
11秒前
11秒前
12完成签到,获得积分10
12秒前
12秒前
Qian发布了新的文献求助30
12秒前
ZZY发布了新的文献求助10
14秒前
14秒前
月下独酌发布了新的文献求助10
14秒前
干净雨安发布了新的文献求助10
15秒前
16秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
TiAmo完成签到,获得积分20
19秒前
sopha完成签到,获得积分10
20秒前
浮游应助甜甜花卷采纳,获得10
20秒前
将军完成签到,获得积分10
21秒前
汤泡泡发布了新的文献求助10
23秒前
27秒前
海洋关注了科研通微信公众号
27秒前
大个应助某亮采纳,获得10
27秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125340
求助须知:如何正确求助?哪些是违规求助? 4329194
关于积分的说明 13490551
捐赠科研通 4164032
什么是DOI,文献DOI怎么找? 2282685
邀请新用户注册赠送积分活动 1283829
关于科研通互助平台的介绍 1223099