亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and validation of an interpretable machine learning model for predicting the risk of distant metastasis in papillary thyroid cancer: a multicenter study

医学 甲状腺乳突癌 甲状腺癌 癌症 多中心研究 转移 肿瘤科 医学物理学 内科学 人工智能 计算机科学 随机对照试验
作者
Fei Hou,Yun Zhu,Hongbo Zhao,Haolin Cai,Yinghui Wang,Xiaoqi Peng,Lin Lu,Rongli He,Yan Hou,Zhenhui Li,Ting Chen
出处
期刊:EClinicalMedicine [Elsevier]
卷期号:77: 102913-102913
标识
DOI:10.1016/j.eclinm.2024.102913
摘要

The survival rate of patients with distant metastasis (DM) of papillary thyroid carcinoma (PTC) is significantly reduced. It is of great significance to find an effective method for early prediction of the risk of DM for formulating individualized diagnosis and treatment plans and improving prognosis. Previous studies have significant limitations, and it is still necessary to develop new models for predicting the risk of DM of PTC. We aimed to develop and validate interpretable machine learning (ML) models for early prediction of DM in patients with PTC using a multicenter cohort. We collected data on patients with PTC who were admitted between June 2013 and May 2023. Data from 1430 patients at Yunnan Cancer Hospital (YCH) served as the training and internal validation set, while data from 434 patients at the First Affiliated Hospital of Kunming Medical University (KMU 1st AH) was used as the external test set. Nine ML methods such as random forest (RF) were used to construct the model. Model prediction performance was compared using evaluation indicators such as the area under the receiver operating characteristic curve (AUC). The SHapley Additive exPlanation (SHAP) method was used to rank the feature importance and explain the final model. Among the nine ML models, the RF model performed the best. The RF model accurately predicted the risk of DM in patients with PTC in both the internal validation of the training set [AUC: 0.913, 95% confidence interval (CI) (0.9075-0.9185)] and the external test set [AUC: 0.8996, 95% CI (0.8483-0.9509)]. The calibration curve showed high agreement between the predicted and observed risks. In the sensitivity analysis focusing on DM sites of PTC, the RF model exhibited outstanding performance in predicting "lung-only metastasis" showing high AUC, specificity, sensitivity, F1 score, and a low Brier score. SHAP analysis identified variables that contributed to the model predictions. An online calculator based on the RF model was developed and made available for clinicians at https://predictingdistantmetastasis.shinyapps.io/shiny1/. 11 variables were included in the final RF model: age of the patient with PTC, whether the tumor size is > 2 cm, whether the tumor size is ≤ 1 cm, lymphocyte (LYM) count, monocyte (MONO) count, monocyte/lymphocyte ratio (MLR), thyroglobulin (TG) level, thyroid peroxidase antibody (TPOAb) level, whether the T stage is T1/2, whether the T stage is T3/4, and whether the N stage is N0. On the basis of large-sample and multicenter data, we developed and validated an explainable ML model for predicting the risk of DM in patients with PTC. The model helps clinicians to identify high-risk patients early and provides a basis for individualized patient treatment plans. This work was supported by the National Natural Science Foundation of China (No. 81960426, 82360345 and 82001986), the Outstanding Youth Science Foundation of Yunnan Basic Research Project (No. 202401AY070001-316), Yunnan Province Applied and Basic Research Foundation (No. 202401AT070008), and Ten Thousand Talent Plans for Young Top-notch Talents of Yunnan Province.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
司徒无剑完成签到,获得积分10
5秒前
11秒前
20秒前
宝字盖发布了新的文献求助10
25秒前
汉堡包应助宝字盖采纳,获得10
29秒前
wujuan完成签到 ,获得积分10
30秒前
35秒前
qwdqw发布了新的文献求助10
39秒前
qwdqw完成签到,获得积分10
47秒前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
爱静静应助苗条绝义采纳,获得30
3分钟前
3分钟前
3分钟前
童念之发布了新的文献求助10
3分钟前
老石完成签到 ,获得积分10
3分钟前
3分钟前
Georgechan完成签到,获得积分10
4分钟前
4分钟前
懦弱的寄琴完成签到 ,获得积分10
4分钟前
唉呀妈呀发布了新的文献求助100
4分钟前
爱静静应助苗条绝义采纳,获得30
4分钟前
5分钟前
yaoyaoyao完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
6分钟前
清脆如娆完成签到 ,获得积分10
6分钟前
6分钟前
宝字盖发布了新的文献求助10
6分钟前
7分钟前
7分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3562020
求助须知:如何正确求助?哪些是违规求助? 3135557
关于积分的说明 9412594
捐赠科研通 2835934
什么是DOI,文献DOI怎么找? 1558802
邀请新用户注册赠送积分活动 728467
科研通“疑难数据库(出版商)”最低求助积分说明 716878