材料科学
硼
硅酸铝
氧化硼
中子衍射
热膨胀
分子动力学
逆向蒙特卡罗
氧化物
复合材料
化学物理
结晶学
化学
计算化学
晶体结构
有机化学
催化作用
冶金
作者
Wenqing Xie,Hong Li,Daniel R. Neuville,Jincheng Du
摘要
Abstract Mixed alkaline earth (MgO, CaO) aluminosilicate glass fibers (MCAS) with and without boron are commonly used as reinforcements in plastic composites, and the fundamental understanding of the thermal and mechanical properties is essential to the design of new glass compositions to satisfy the growing demands in applications from renewable energy to lightweight structural components. In this work, a series of Li 2 O containing low‐boron MCAS fiber glasses have been studied by using molecular dynamic (MD) simulations with recently developed effective partial charge composition dependent boron potentials. Structural characteristics, such as pair distribution function, bond angle distribution, and neutron/X‐ray diffraction structure factors, were calculated, as well as properties such as elastic moduli and vibrational density of states. The addition of Li 2 O was found to improve the elastic moduli of the fiber glasses in excellent agreement with experimental results we reported earlier. The simulation results showed that the weakened network connectivity and decrease of tri‐/bridging oxygen have positively affected the lowering of liquid temperature, owing to the transformation to more boron Q 2 and silicon/aluminon Q 3 . It is found that higher oxygen packing density, coordinated aluminum/boron species such as [AlO 5 ] and [BO 4 ] units, larger‐membered oxide rings, and intensified connections of [AlO x ] and [SiO 4 ] are the main reasons that lead to improved mechanical properties. MD‐based quantitative structure–property relationship analyses were performed and showed excellent correlations to measured properties, indicating that it is a promising approach to understand glass properties and design new glass compositions for functional applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI