Multiparametric MRI‐Based Deep Learning Radiomics Model for Assessing 5‐Year Recurrence Risk in Non‐Muscle Invasive Bladder Cancer

医学 膀胱癌 接收机工作特性 磁共振成像 比例危险模型 队列 无线电技术 磁共振弥散成像 放射科 核医学 癌症 肿瘤科 内科学
作者
Haolin Huang,Yiping Huang,Joshua Kaggie,Qian Cai,Peng Yang,Jie Wei,Lijuan Wang,Yan Guo,Hongbing Lu,Huanjun Wang,Xiaopan Xu
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:61 (3): 1442-1456 被引量:7
标识
DOI:10.1002/jmri.29574
摘要

Background Accurately assessing 5‐year recurrence rates is crucial for managing non‐muscle‐invasive bladder carcinoma (NMIBC). However, the European Organization for Research and Treatment of Cancer (EORTC) model exhibits poor performance. Purpose To investigate whether integrating multiparametric MRI (mp‐MRI) with clinical factors improves NMIBC 5‐year recurrence risk assessment. Study Type Retrospective. Population One hundred ninety‐one patients (median age, 65 years; age range, 54–73 years; 27 females) underwent mp‐MRI between 2011 and 2017, and received ≥5‐year follow‐ups. They were divided into a training cohort (N = 115) and validation/testing cohorts (N = 38 in each). Recurrence rates were 23.5% (27/115) in the training cohort and 23.7% (9/38) in both validation and testing cohorts. Field Strength/Sequence 3‐T, fast spin echo T2‐weighted imaging (T2WI), single‐shot echo planar diffusion‐weighted imaging (DWI), and volumetric spoiled gradient echo dynamic contrast‐enhanced (DCE) sequences. Assessment Radiomics and deep learning (DL) features were extracted from the combined region of interest (cROI) including intratumoral and peritumoral areas on mp‐MRI. Four models were developed, including clinical, cROI‐based radiomics, DL, and clinical‐radiomics‐DL (CRDL) models. Statistical Tests Student's t ‐tests, DeLong's tests with Bonferroni correction, receiver operating characteristics with the area under the curves (AUCs), Cox proportional hazard analyses, Kaplan–Meier plots, SHapley Additive ExPlanations (SHAP) values, and Akaike information criterion for clinical usefulness. A P ‐value <0.05 was considered statistically significant. Results The cROI‐based CRDL model showed superior performance (AUC 0.909; 95% CI: 0.792–0.985) compared to other models in the testing cohort for assessing 5‐year recurrence in NMIBC. It achieved the highest Harrell's concordance index (0.804; 95% CI: 0.749–0.859) for estimating recurrence‐free survival. SHAP analysis further highlighted the substantial role (22%) of the radiomics features in NMIBC recurrence assessment. Data Conclusion Integrating cROI‐based radiomics and DL features from preoperative mp‐MRI with clinical factors could improve 5‐year recurrence risk assessment in NMIBC. Evidence Level 3 Technical Efficacy Stage 3
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
努力摆烂发布了新的文献求助10
刚刚
刚刚
D_发布了新的文献求助10
1秒前
可可可11发布了新的文献求助10
1秒前
1秒前
daididexhl发布了新的文献求助10
1秒前
2秒前
2秒前
Adel发布了新的文献求助10
2秒前
容cc发布了新的文献求助10
2秒前
鱼瓜强发布了新的文献求助10
2秒前
石鑫成完成签到,获得积分10
3秒前
科研通AI6应助絮1111采纳,获得10
3秒前
Rylee发布了新的文献求助10
3秒前
ZZZ发布了新的文献求助10
4秒前
orixero应助Proustian采纳,获得10
4秒前
4秒前
4秒前
酷酷问夏发布了新的文献求助10
4秒前
will发布了新的文献求助10
4秒前
whisper发布了新的文献求助10
6秒前
酷酷的从丹完成签到,获得积分10
6秒前
李健应助欧阳采纳,获得10
6秒前
火星上乐驹完成签到,获得积分10
6秒前
有魅力的依霜完成签到,获得积分10
7秒前
7秒前
Orange应助容cc采纳,获得10
7秒前
ordin发布了新的文献求助10
7秒前
7秒前
8秒前
科研通AI2S应助Rylee采纳,获得10
8秒前
9秒前
石鑫成发布了新的文献求助10
9秒前
yurenxiaojie发布了新的文献求助10
9秒前
可可可11完成签到,获得积分10
9秒前
9秒前
伊莱恩发布了新的文献求助10
9秒前
彭于晏应助123采纳,获得10
10秒前
D_完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609460
求助须知:如何正确求助?哪些是违规求助? 4694074
关于积分的说明 14880935
捐赠科研通 4719643
什么是DOI,文献DOI怎么找? 2544750
邀请新用户注册赠送积分活动 1509658
关于科研通互助平台的介绍 1472950