The study of engagement at work from the artificial intelligence perspective: A systematic review

计算机科学 透视图(图形) 系统回顾 人工智能 工作(物理) 工作投入 数据科学 梅德林 政治学 机械工程 工程类 法学
作者
Claudia Navarro,Manuel Pulido‐Martos,Cristina Pérez‐Lozano
出处
期刊:Expert Systems [Wiley]
卷期号:41 (11)
标识
DOI:10.1111/exsy.13673
摘要

Abstract Engagement has been defined as an attitude toward work, as a positive, satisfying, work‐related state of mind characterized by high levels of vigour, dedication, and absorption. Both its definition and its assessment have been controversial; however, new methods for its assessment, including artificial intelligence (AI), have been introduced in recent years. Therefore, this research aims to determine the state of the art of AI in the study of engagement. To this end, we conducted a systematic review in accordance with PRISMA to analyse the publications to date on the use of AI for the analysis of engagement. The search, carried out in six databases, was filtered, and 15 papers were finally analysed. The results show that AI has been used mainly to assess and predict engagement levels, as well as to understand the relationships between engagement and other variables. The most commonly used AI techniques are machine learning (ML) and natural language processing (NLP), and all publications use structured and unstructured data, mainly from self‐report instruments, social networks, and datasets. The accuracy of the models varies from 22% to 87%, and its main benefit has been to help both managers and HR staff understand employee engagement, although it has also contributed to research. Most of the articles have been published since 2015, and the geography has been global, with publications predominantly in India and the US. In conclusion, this study highlights the state of the art in AI for the study of engagement and concludes that the number of publications is increasing, indicating that this is possibly a new field or area of research in which important advances can be made in the study of engagement through new and novel techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助灵巧的坤采纳,获得10
刚刚
1秒前
wwwwyyyy完成签到,获得积分10
1秒前
hbb完成签到,获得积分10
1秒前
故意的傲玉应助韭菜采纳,获得10
1秒前
慕青应助脆弱的仙人掌采纳,获得10
1秒前
SY发布了新的文献求助10
1秒前
Libeau完成签到,获得积分10
1秒前
科研通AI5应助嘉禾望岗采纳,获得10
1秒前
凝安完成签到 ,获得积分10
2秒前
英姑应助Harlotte采纳,获得10
2秒前
双勾玉发布了新的文献求助10
3秒前
Owen应助gaos采纳,获得10
3秒前
3秒前
3秒前
QXS发布了新的文献求助10
4秒前
4秒前
充电宝应助乖猴猴采纳,获得10
4秒前
迟大猫应助VDC采纳,获得10
5秒前
Jenny应助故意的寒安采纳,获得10
5秒前
本杰明完成签到,获得积分10
5秒前
大树发布了新的文献求助10
6秒前
在望完成签到,获得积分10
6秒前
April完成签到 ,获得积分10
6秒前
6秒前
FashionBoy应助成哥采纳,获得10
6秒前
NexusExplorer应助研友_8yN60L采纳,获得30
7秒前
蒋时晏应助Aria采纳,获得30
7秒前
科研通AI5应助哒哒猪采纳,获得10
7秒前
左手天下完成签到 ,获得积分10
7秒前
7秒前
yyauthor完成签到,获得积分10
7秒前
Maxw发布了新的文献求助10
7秒前
哈哈哈haha完成签到,获得积分10
8秒前
8秒前
巨大的小侠完成签到,获得积分10
8秒前
结实雪卉发布了新的文献求助10
8秒前
李健的小迷弟应助韭菜采纳,获得10
9秒前
QXS完成签到,获得积分10
10秒前
852应助无限的隶采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759