The study of engagement at work from the artificial intelligence perspective: A systematic review

计算机科学 透视图(图形) 系统回顾 人工智能 工作(物理) 工作投入 数据科学 梅德林 政治学 机械工程 工程类 法学
作者
Claudia Navarro,Manuel Pulido‐Martos,Cristina Pérez‐Lozano
出处
期刊:Expert Systems [Wiley]
卷期号:41 (11)
标识
DOI:10.1111/exsy.13673
摘要

Abstract Engagement has been defined as an attitude toward work, as a positive, satisfying, work‐related state of mind characterized by high levels of vigour, dedication, and absorption. Both its definition and its assessment have been controversial; however, new methods for its assessment, including artificial intelligence (AI), have been introduced in recent years. Therefore, this research aims to determine the state of the art of AI in the study of engagement. To this end, we conducted a systematic review in accordance with PRISMA to analyse the publications to date on the use of AI for the analysis of engagement. The search, carried out in six databases, was filtered, and 15 papers were finally analysed. The results show that AI has been used mainly to assess and predict engagement levels, as well as to understand the relationships between engagement and other variables. The most commonly used AI techniques are machine learning (ML) and natural language processing (NLP), and all publications use structured and unstructured data, mainly from self‐report instruments, social networks, and datasets. The accuracy of the models varies from 22% to 87%, and its main benefit has been to help both managers and HR staff understand employee engagement, although it has also contributed to research. Most of the articles have been published since 2015, and the geography has been global, with publications predominantly in India and the US. In conclusion, this study highlights the state of the art in AI for the study of engagement and concludes that the number of publications is increasing, indicating that this is possibly a new field or area of research in which important advances can be made in the study of engagement through new and novel techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxt12305313完成签到 ,获得积分10
1秒前
小马甲应助ming采纳,获得10
1秒前
1秒前
杨自强完成签到,获得积分10
2秒前
英俊凡波发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
no_one完成签到,获得积分10
4秒前
liuyushi完成签到,获得积分20
4秒前
小白发布了新的文献求助10
5秒前
暴躁的元珊完成签到,获得积分10
5秒前
华仔应助只想学习采纳,获得10
6秒前
12ocky发布了新的文献求助10
6秒前
7秒前
假萌发布了新的文献求助10
7秒前
mike5492发布了新的文献求助10
8秒前
夏远航完成签到,获得积分0
8秒前
neinei778发布了新的文献求助10
9秒前
liuyushi发布了新的文献求助30
10秒前
爱撒娇的橘子完成签到,获得积分10
10秒前
金一完成签到 ,获得积分10
11秒前
12秒前
小绵羊完成签到 ,获得积分10
12秒前
13秒前
13秒前
15秒前
假萌完成签到,获得积分10
16秒前
零零零零完成签到,获得积分20
16秒前
17秒前
平芜新月完成签到,获得积分20
17秒前
英俊凡波完成签到,获得积分20
18秒前
泽灵发布了新的文献求助10
19秒前
聪明梦容发布了新的文献求助20
20秒前
都是发布了新的文献求助30
20秒前
专注的小松鼠完成签到,获得积分10
21秒前
追寻夜白完成签到,获得积分10
21秒前
小奋青完成签到 ,获得积分10
22秒前
zzh发布了新的文献求助10
22秒前
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292382
求助须知:如何正确求助?哪些是违规求助? 2928703
关于积分的说明 8438278
捐赠科研通 2600816
什么是DOI,文献DOI怎么找? 1419277
科研通“疑难数据库(出版商)”最低求助积分说明 660268
邀请新用户注册赠送积分活动 642921