亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The study of engagement at work from the artificial intelligence perspective: A systematic review

计算机科学 透视图(图形) 系统回顾 人工智能 工作(物理) 工作投入 数据科学 梅德林 政治学 机械工程 工程类 法学
作者
Claudia Navarro,Manuel Pulido‐Martos,Cristina Pérez‐Lozano
出处
期刊:Expert Systems [Wiley]
卷期号:41 (11)
标识
DOI:10.1111/exsy.13673
摘要

Abstract Engagement has been defined as an attitude toward work, as a positive, satisfying, work‐related state of mind characterized by high levels of vigour, dedication, and absorption. Both its definition and its assessment have been controversial; however, new methods for its assessment, including artificial intelligence (AI), have been introduced in recent years. Therefore, this research aims to determine the state of the art of AI in the study of engagement. To this end, we conducted a systematic review in accordance with PRISMA to analyse the publications to date on the use of AI for the analysis of engagement. The search, carried out in six databases, was filtered, and 15 papers were finally analysed. The results show that AI has been used mainly to assess and predict engagement levels, as well as to understand the relationships between engagement and other variables. The most commonly used AI techniques are machine learning (ML) and natural language processing (NLP), and all publications use structured and unstructured data, mainly from self‐report instruments, social networks, and datasets. The accuracy of the models varies from 22% to 87%, and its main benefit has been to help both managers and HR staff understand employee engagement, although it has also contributed to research. Most of the articles have been published since 2015, and the geography has been global, with publications predominantly in India and the US. In conclusion, this study highlights the state of the art in AI for the study of engagement and concludes that the number of publications is increasing, indicating that this is possibly a new field or area of research in which important advances can be made in the study of engagement through new and novel techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洛阳发布了新的文献求助10
11秒前
20秒前
量子星尘发布了新的文献求助10
22秒前
呼延夜玉完成签到 ,获得积分10
26秒前
ww发布了新的文献求助10
53秒前
lixuebin完成签到 ,获得积分10
57秒前
CAOHOU应助xingsixs采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
ww发布了新的文献求助100
1分钟前
1分钟前
ww发布了新的文献求助10
1分钟前
顺利的尔芙完成签到,获得积分10
1分钟前
毓雅完成签到,获得积分10
1分钟前
小马甲应助顺利的尔芙采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
ww发布了新的文献求助10
2分钟前
ww发布了新的文献求助100
3分钟前
xingsixs完成签到 ,获得积分10
3分钟前
3分钟前
九零后无心完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
lin.xy完成签到,获得积分10
4分钟前
ww发布了新的文献求助10
4分钟前
ww发布了新的文献求助10
4分钟前
al完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
ww发布了新的文献求助10
5分钟前
ww发布了新的文献求助10
5分钟前
5分钟前
5分钟前
依霏发布了新的文献求助10
5分钟前
5分钟前
shenglue发布了新的文献求助10
5分钟前
丘比特应助依霏采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
rrrrrrry发布了新的文献求助20
6分钟前
ww发布了新的文献求助20
6分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015088
求助须知:如何正确求助?哪些是违规求助? 3555039
关于积分的说明 11317842
捐赠科研通 3288546
什么是DOI,文献DOI怎么找? 1812266
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983