GeneCompass: deciphering universal gene regulatory mechanisms with a knowledge-informed cross-species foundation model

生物 破译 计算生物学 基因调控网络 转录组 基因 生物信息学 遗传学 基因表达
作者
Xiaodong Yang,Guole Liu,Guihai Feng,Dechao Bu,Pengfei Wang,Jie Jiang,Shubai Chen,Qinmeng Yang,Hefan Miao,Yiyang Zhang,Zhenpeng Man,Zhongming Liang,Zichen Wang,Yaning Li,Zheng Li,Yana Liu,Yao Tian,Wenhao Liu,Cong Li,Ao Li
出处
期刊:Cell Research [Springer Nature]
被引量:10
标识
DOI:10.1038/s41422-024-01034-y
摘要

Abstract Deciphering universal gene regulatory mechanisms in diverse organisms holds great potential for advancing our knowledge of fundamental life processes and facilitating clinical applications. However, the traditional research paradigm primarily focuses on individual model organisms and does not integrate various cell types across species. Recent breakthroughs in single-cell sequencing and deep learning techniques present an unprecedented opportunity to address this challenge. In this study, we built an extensive dataset of over 120 million human and mouse single-cell transcriptomes. After data preprocessing, we obtained 101,768,420 single-cell transcriptomes and developed a knowledge-informed cross-species foundation model, named GeneCompass. During pre-training, GeneCompass effectively integrated four types of prior biological knowledge to enhance our understanding of gene regulatory mechanisms in a self-supervised manner. By fine-tuning for multiple downstream tasks, GeneCompass outperformed state-of-the-art models in diverse applications for a single species and unlocked new realms of cross-species biological investigations. We also employed GeneCompass to search for key factors associated with cell fate transition and showed that the predicted candidate genes could successfully induce the differentiation of human embryonic stem cells into the gonadal fate. Overall, GeneCompass demonstrates the advantages of using artificial intelligence technology to decipher universal gene regulatory mechanisms and shows tremendous potential for accelerating the discovery of critical cell fate regulators and candidate drug targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
科目三应助sudaxia100采纳,获得10
1秒前
1秒前
bkagyin应助chenchen采纳,获得10
3秒前
闪闪落雁完成签到,获得积分10
3秒前
可爱的函函应助巫马太兰采纳,获得10
4秒前
tsuki完成签到,获得积分10
5秒前
J11发布了新的文献求助10
5秒前
小杨发布了新的文献求助10
6秒前
223311完成签到,获得积分10
7秒前
8秒前
刘善行发布了新的文献求助30
8秒前
星辰大海应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
9秒前
李健应助科研通管家采纳,获得10
9秒前
健忘水云应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
10秒前
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
Singularity应助科研通管家采纳,获得10
10秒前
图图应助科研通管家采纳,获得40
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
Dante应助科研通管家采纳,获得10
10秒前
10秒前
11秒前
去码头整点薯条完成签到,获得积分10
11秒前
轻松友容发布了新的文献求助10
12秒前
keo发布了新的文献求助10
15秒前
htt完成签到 ,获得积分10
17秒前
嘟嘟嘟发布了新的文献求助10
18秒前
actor2006完成签到,获得积分10
19秒前
mengyijie完成签到,获得积分20
23秒前
善学以致用应助yxy采纳,获得10
24秒前
悲伤西米露应助kaikai采纳,获得10
24秒前
Joyce完成签到,获得积分10
26秒前
殷勤的可兰完成签到 ,获得积分10
27秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737404
求助须知:如何正确求助?哪些是违规求助? 3281212
关于积分的说明 10023771
捐赠科研通 2997969
什么是DOI,文献DOI怎么找? 1644880
邀请新用户注册赠送积分活动 782390
科研通“疑难数据库(出版商)”最低求助积分说明 749782