Machine learning based identification potential feature genes for prediction of drug efficacy in nonalcoholic steatohepatitis animal model

脂肪性肝炎 非酒精性脂肪性肝炎 脂肪肝 生物信息学 医学 生物信息学 非酒精性脂肪肝 生物 内科学 基因 生物化学 疾病
作者
Marwa Matboli,Ibrahim Abdelbaky,Abdelrahman Khaled,Radwa Khaled,Shaimaa Hamady,Laila M. Farid,Mariam B. Abouelkhair,Noha E. El-Attar,Mohamed Fathallah,Mousavi Seyed Hamid,Gena M. Elmakromy,Marwa Ali
出处
期刊:Lipids in Health and Disease [Springer Nature]
卷期号:23 (1)
标识
DOI:10.1186/s12944-024-02231-9
摘要

Abstract Background Nonalcoholic Steatohepatitis (NASH) results from complex liver conditions involving metabolic, inflammatory, and fibrogenic processes. Despite its burden, there has been a lack of any approved food-and-drug administration therapy up till now. Purpose Utilizing machine learning (ML) algorithms, the study aims to identify reliable potential genes to accurately predict the treatment response in the NASH animal model using biochemical and molecular markers retrieved using bioinformatics techniques. Methods The NASH-induced rat models were administered various microbiome-targeted therapies and herbal drugs for 12 weeks, these drugs resulted in reducing hepatic lipid accumulation, liver inflammation, and histopathological changes. The ML model was trained and tested based on the Histopathological NASH score (HPS); while (0–4) HPS considered Improved NASH and (5–8) considered non-improved, confirmed through rats’ liver histopathological examination, incorporates 34 features comprising 20 molecular markers (mRNAs-microRNAs-Long non-coding-RNAs) and 14 biochemical markers that are highly enriched in NASH pathogenesis. Six different ML models were used in the proposed model for the prediction of NASH improvement, with Gradient Boosting demonstrating the highest accuracy of 98% in predicting NASH drug response. Findings Following a gradual reduction in features, the outcomes demonstrated superior performance when employing the Random Forest classifier, yielding an accuracy of 98.4%. The principal selected molecular features included YAP1, LATS1, NF2, SRD5A3-AS1, FOXA2, TEAD2 , miR-650, MMP14, ITGB1, and miR-6881-5P, while the biochemical markers comprised triglycerides (TG), ALT, ALP, total bilirubin (T. Bilirubin), alpha-fetoprotein (AFP), and low-density lipoprotein cholesterol (LDL-C). Conclusion This study introduced an ML model incorporating 16 noninvasive features, including molecular and biochemical signatures, which achieved high performance and accuracy in detecting NASH improvement. This model could potentially be used as diagnostic tools and to identify target therapies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Microcolin完成签到,获得积分10
1秒前
yangquanquan发布了新的文献求助10
1秒前
ding应助犹豫的铸海采纳,获得10
2秒前
张鑫完成签到,获得积分10
2秒前
ybwei2008_163发布了新的文献求助10
2秒前
科研通AI2S应助伟伟采纳,获得10
2秒前
2秒前
cai发布了新的文献求助30
3秒前
吴正言发布了新的文献求助10
3秒前
3秒前
AI完成签到,获得积分10
3秒前
Never完成签到 ,获得积分10
3秒前
ohno耶耶耶发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
清爽灰狼完成签到,获得积分10
4秒前
所所应助xiaozheng采纳,获得10
4秒前
4秒前
5秒前
852应助wewewew采纳,获得10
6秒前
小水完成签到,获得积分10
6秒前
6秒前
上官若男应助雪千羽采纳,获得10
7秒前
坤坤发布了新的文献求助10
7秒前
7秒前
7秒前
雪霓裳发布了新的文献求助10
8秒前
小欢完成签到,获得积分10
8秒前
JiahaoRao发布了新的文献求助10
8秒前
8秒前
细心的靖巧发布了新的文献求助200
8秒前
9秒前
每天都要开心酱完成签到,获得积分10
9秒前
明浠vvv完成签到,获得积分10
9秒前
嘎嘎嘎嘎发布了新的文献求助10
9秒前
ovc发布了新的文献求助10
9秒前
sajelsch发布了新的文献求助10
10秒前
神勇艳血完成签到,获得积分10
11秒前
研友_VZG7GZ应助吴正言采纳,获得10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152571
求助须知:如何正确求助?哪些是违规求助? 2803797
关于积分的说明 7855643
捐赠科研通 2461450
什么是DOI,文献DOI怎么找? 1310300
科研通“疑难数据库(出版商)”最低求助积分说明 629199
版权声明 601782