Machine learning based identification potential feature genes for prediction of drug efficacy in nonalcoholic steatohepatitis animal model

脂肪性肝炎 非酒精性脂肪性肝炎 脂肪肝 生物信息学 医学 生物信息学 非酒精性脂肪肝 生物 内科学 基因 生物化学 疾病
作者
Marwa Matboli,Ibrahim Abdelbaky,Abdelrahman Khaled,Radwa Khaled,Shaimaa Hamady,Laila M. Farid,Mariam B. Abouelkhair,Noha E. El-Attar,Mohamed Fathallah,Mousavi Seyed Hamid,Gena M. Elmakromy,Marwa Ali
出处
期刊:Lipids in Health and Disease [BioMed Central]
卷期号:23 (1)
标识
DOI:10.1186/s12944-024-02231-9
摘要

Abstract Background Nonalcoholic Steatohepatitis (NASH) results from complex liver conditions involving metabolic, inflammatory, and fibrogenic processes. Despite its burden, there has been a lack of any approved food-and-drug administration therapy up till now. Purpose Utilizing machine learning (ML) algorithms, the study aims to identify reliable potential genes to accurately predict the treatment response in the NASH animal model using biochemical and molecular markers retrieved using bioinformatics techniques. Methods The NASH-induced rat models were administered various microbiome-targeted therapies and herbal drugs for 12 weeks, these drugs resulted in reducing hepatic lipid accumulation, liver inflammation, and histopathological changes. The ML model was trained and tested based on the Histopathological NASH score (HPS); while (0–4) HPS considered Improved NASH and (5–8) considered non-improved, confirmed through rats’ liver histopathological examination, incorporates 34 features comprising 20 molecular markers (mRNAs-microRNAs-Long non-coding-RNAs) and 14 biochemical markers that are highly enriched in NASH pathogenesis. Six different ML models were used in the proposed model for the prediction of NASH improvement, with Gradient Boosting demonstrating the highest accuracy of 98% in predicting NASH drug response. Findings Following a gradual reduction in features, the outcomes demonstrated superior performance when employing the Random Forest classifier, yielding an accuracy of 98.4%. The principal selected molecular features included YAP1, LATS1, NF2, SRD5A3-AS1, FOXA2, TEAD2 , miR-650, MMP14, ITGB1, and miR-6881-5P, while the biochemical markers comprised triglycerides (TG), ALT, ALP, total bilirubin (T. Bilirubin), alpha-fetoprotein (AFP), and low-density lipoprotein cholesterol (LDL-C). Conclusion This study introduced an ML model incorporating 16 noninvasive features, including molecular and biochemical signatures, which achieved high performance and accuracy in detecting NASH improvement. This model could potentially be used as diagnostic tools and to identify target therapies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
图治完成签到,获得积分10
1秒前
3秒前
飘逸果汁完成签到,获得积分10
5秒前
刘玉梅完成签到,获得积分10
6秒前
PANDA发布了新的文献求助10
7秒前
Scinature发布了新的文献求助10
8秒前
Shelley发布了新的文献求助10
8秒前
ucjudgo完成签到,获得积分10
11秒前
支妙完成签到,获得积分10
14秒前
19秒前
19秒前
无花果应助科研通管家采纳,获得10
20秒前
烟花应助科研通管家采纳,获得10
20秒前
orixero应助科研通管家采纳,获得10
20秒前
CodeCraft应助科研通管家采纳,获得50
20秒前
Ava应助科研通管家采纳,获得10
20秒前
所所应助科研通管家采纳,获得10
20秒前
21秒前
今后应助科研通管家采纳,获得30
21秒前
hhhi应助科研通管家采纳,获得10
21秒前
坦率的匪应助科研通管家采纳,获得10
21秒前
海东来应助科研通管家采纳,获得30
21秒前
研友_VZG7GZ应助科研通管家采纳,获得10
21秒前
坦率的匪应助科研通管家采纳,获得10
21秒前
21秒前
Owen应助科研通管家采纳,获得10
21秒前
坦率的匪应助科研通管家采纳,获得10
21秒前
坦率的匪应助科研通管家采纳,获得10
21秒前
科研乞丐应助科研通管家采纳,获得20
21秒前
21秒前
思源应助科研通管家采纳,获得10
21秒前
脑洞疼应助科研通管家采纳,获得10
21秒前
坦率的匪应助科研通管家采纳,获得10
21秒前
kexing发布了新的文献求助10
22秒前
桐桐应助feedyoursoul采纳,获得10
22秒前
wshengnan发布了新的文献求助10
24秒前
28秒前
wshengnan完成签到,获得积分10
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997562
求助须知:如何正确求助?哪些是违规求助? 3537094
关于积分的说明 11270816
捐赠科研通 3276315
什么是DOI,文献DOI怎么找? 1806876
邀请新用户注册赠送积分活动 883554
科研通“疑难数据库(出版商)”最低求助积分说明 809975