亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning based identification potential feature genes for prediction of drug efficacy in nonalcoholic steatohepatitis animal model

脂肪性肝炎 非酒精性脂肪性肝炎 脂肪肝 生物信息学 医学 生物信息学 非酒精性脂肪肝 生物 内科学 基因 生物化学 疾病
作者
Marwa Matboli,Ibrahim Abdelbaky,Abdelrahman Khaled,Radwa Khaled,Shaimaa Hamady,Laila M. Farid,Mariam B. Abouelkhair,Noha E. El-Attar,Mohamed Fathallah,Mousavi Seyed Hamid,Gena M. Elmakromy,Marwa Ali
出处
期刊:Lipids in Health and Disease [Springer Nature]
卷期号:23 (1)
标识
DOI:10.1186/s12944-024-02231-9
摘要

Abstract Background Nonalcoholic Steatohepatitis (NASH) results from complex liver conditions involving metabolic, inflammatory, and fibrogenic processes. Despite its burden, there has been a lack of any approved food-and-drug administration therapy up till now. Purpose Utilizing machine learning (ML) algorithms, the study aims to identify reliable potential genes to accurately predict the treatment response in the NASH animal model using biochemical and molecular markers retrieved using bioinformatics techniques. Methods The NASH-induced rat models were administered various microbiome-targeted therapies and herbal drugs for 12 weeks, these drugs resulted in reducing hepatic lipid accumulation, liver inflammation, and histopathological changes. The ML model was trained and tested based on the Histopathological NASH score (HPS); while (0–4) HPS considered Improved NASH and (5–8) considered non-improved, confirmed through rats’ liver histopathological examination, incorporates 34 features comprising 20 molecular markers (mRNAs-microRNAs-Long non-coding-RNAs) and 14 biochemical markers that are highly enriched in NASH pathogenesis. Six different ML models were used in the proposed model for the prediction of NASH improvement, with Gradient Boosting demonstrating the highest accuracy of 98% in predicting NASH drug response. Findings Following a gradual reduction in features, the outcomes demonstrated superior performance when employing the Random Forest classifier, yielding an accuracy of 98.4%. The principal selected molecular features included YAP1, LATS1, NF2, SRD5A3-AS1, FOXA2, TEAD2 , miR-650, MMP14, ITGB1, and miR-6881-5P, while the biochemical markers comprised triglycerides (TG), ALT, ALP, total bilirubin (T. Bilirubin), alpha-fetoprotein (AFP), and low-density lipoprotein cholesterol (LDL-C). Conclusion This study introduced an ML model incorporating 16 noninvasive features, including molecular and biochemical signatures, which achieved high performance and accuracy in detecting NASH improvement. This model could potentially be used as diagnostic tools and to identify target therapies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
KeldonHuang发布了新的文献求助10
6秒前
6秒前
哈哈哈发布了新的文献求助10
11秒前
牛先生生完成签到,获得积分10
16秒前
hahahahhaha发布了新的文献求助10
21秒前
慕青应助弋鱼采纳,获得10
21秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
24秒前
君莫笑发布了新的文献求助10
29秒前
30秒前
喜悦宫苴完成签到,获得积分10
30秒前
负责以山完成签到 ,获得积分10
30秒前
32秒前
呼啦啦啦应助科研通管家采纳,获得10
33秒前
汉堡包应助科研通管家采纳,获得10
33秒前
Criminology34应助科研通管家采纳,获得10
33秒前
搜集达人应助科研通管家采纳,获得10
33秒前
在水一方应助科研通管家采纳,获得10
33秒前
33秒前
合一海盗完成签到,获得积分10
34秒前
George发布了新的文献求助10
38秒前
又如何发布了新的文献求助10
39秒前
hahahahhaha完成签到,获得积分10
40秒前
47秒前
48秒前
49秒前
shui发布了新的文献求助10
52秒前
ww发布了新的文献求助30
53秒前
闪闪的梦柏完成签到 ,获得积分10
56秒前
小二郎应助shui采纳,获得10
59秒前
无极微光应助GCD采纳,获得20
1分钟前
寻道图强应助轻松觅荷采纳,获得40
1分钟前
少川完成签到 ,获得积分10
1分钟前
南尧z完成签到 ,获得积分10
1分钟前
王一完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI6应助ww采纳,获得10
1分钟前
KeldonHuang完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657709
求助须知:如何正确求助?哪些是违规求助? 4811692
关于积分的说明 15080121
捐赠科研通 4815903
什么是DOI,文献DOI怎么找? 2576964
邀请新用户注册赠送积分活动 1531997
关于科研通互助平台的介绍 1490508