CT radiomics-based biomarkers can predict response to immunotherapy in hepatocellular carcinoma

免疫疗法 无线电技术 人工智能 阿达布思 计算机科学 朴素贝叶斯分类器 随机森林 肝细胞癌 机器学习 特征(语言学) 支持向量机 医学 肿瘤科 癌症 内科学 哲学 语言学
作者
Liang Qi,Yahui Zhu,Jinxin Li,Mingzhen Zhou,Baorui Liu,Jiu Chen,Jie Shen
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-70208-w
摘要

Hepatocellular Carcinoma (HCC) remains a leading cause of cancer deaths. Despite the rise of immunotherapies, many HCC patients don't benefit. There's a clear need for biomarkers to guide treatment decisions. This research aims to identify such biomarkers by combining radiological data and machine learning. We analyzed clinical and CT imaging data of 54 HCC patients undergoing immunotherapy. Radiologic features were examined to develop a model predicting short-term immunotherapy effects. We utilized 9 machine learning and 2 ensemble learning techniques using RapidMiner for model construction. We conducted the validation of the above feature combination using 29 HCC patients who received immunotherapy from another hospital, and tested and validated it using XGBoost combined with a genetic algorithm. In 54 HCC patients, radiomics features varied significantly between those with partial response (PR) and stable disease (SD). Key features in Gray Level Run Length Matrix (GLRLM) and in adjacent tissues' Intensity Direct, Neighborhood Gray Tone Difference Matrix (NGTDM), and Shape correlated with short-term immunotherapy efficacy. Selected feature combinations of 15, 19, and 8/15 features yielded better outcomes. Deep learning, random forest, and naive bayes outperformed other methods, with Bagging being more reliable than Adaboost. In the validation set of 29 HCC patients, the mentioned feature combination also demonstrated favorable performance. Furthermore, we achieved improved results when employing XGBoost in conjunction with a genetic algorithm for testing and validation. The machine learning model built with CT image features derived from GLCM, GLRLM, IntensityDirect, NGTDM, and Shape can accurately forecast the short-term efficacy of immunotherapy for HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jessie发布了新的文献求助10
1秒前
加鲁鲁发布了新的文献求助10
1秒前
Xangel发布了新的文献求助10
1秒前
清爽幻竹发布了新的文献求助10
2秒前
hanchangcun发布了新的文献求助10
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
Laisy完成签到,获得积分10
5秒前
yizhiGao应助sward915采纳,获得10
5秒前
6秒前
6秒前
6秒前
7秒前
微昆界发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
Gambit完成签到,获得积分10
7秒前
领导范儿应助清脆的书桃采纳,获得10
7秒前
7秒前
jessie完成签到,获得积分10
8秒前
lvyan发布了新的文献求助10
8秒前
挖掘机应助zoe666采纳,获得200
8秒前
8秒前
嘿嘿发布了新的文献求助10
8秒前
orixero应助元气少女岳云鹏采纳,获得10
9秒前
夹心小僧完成签到,获得积分10
9秒前
10秒前
10秒前
回乐发布了新的文献求助10
10秒前
10秒前
10秒前
王啵啵发布了新的文献求助10
11秒前
bkagyin应助朱凯洋采纳,获得10
11秒前
Cc发布了新的文献求助10
11秒前
evb发布了新的文献求助10
11秒前
11秒前
黄则已发布了新的文献求助10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951532
求助须知:如何正确求助?哪些是违规求助? 3496928
关于积分的说明 11085323
捐赠科研通 3227364
什么是DOI,文献DOI怎么找? 1784413
邀请新用户注册赠送积分活动 868444
科研通“疑难数据库(出版商)”最低求助积分说明 801139