CT radiomics-based biomarkers can predict response to immunotherapy in hepatocellular carcinoma

免疫疗法 无线电技术 人工智能 阿达布思 计算机科学 朴素贝叶斯分类器 随机森林 肝细胞癌 机器学习 特征(语言学) 支持向量机 医学 肿瘤科 癌症 内科学 语言学 哲学
作者
Liang Qi,Yahui Zhu,Jinxin Li,Mingzhen Zhou,Baorui Liu,Jiu Chen,Jie Shen
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-70208-w
摘要

Hepatocellular Carcinoma (HCC) remains a leading cause of cancer deaths. Despite the rise of immunotherapies, many HCC patients don't benefit. There's a clear need for biomarkers to guide treatment decisions. This research aims to identify such biomarkers by combining radiological data and machine learning. We analyzed clinical and CT imaging data of 54 HCC patients undergoing immunotherapy. Radiologic features were examined to develop a model predicting short-term immunotherapy effects. We utilized 9 machine learning and 2 ensemble learning techniques using RapidMiner for model construction. We conducted the validation of the above feature combination using 29 HCC patients who received immunotherapy from another hospital, and tested and validated it using XGBoost combined with a genetic algorithm. In 54 HCC patients, radiomics features varied significantly between those with partial response (PR) and stable disease (SD). Key features in Gray Level Run Length Matrix (GLRLM) and in adjacent tissues' Intensity Direct, Neighborhood Gray Tone Difference Matrix (NGTDM), and Shape correlated with short-term immunotherapy efficacy. Selected feature combinations of 15, 19, and 8/15 features yielded better outcomes. Deep learning, random forest, and naive bayes outperformed other methods, with Bagging being more reliable than Adaboost. In the validation set of 29 HCC patients, the mentioned feature combination also demonstrated favorable performance. Furthermore, we achieved improved results when employing XGBoost in conjunction with a genetic algorithm for testing and validation. The machine learning model built with CT image features derived from GLCM, GLRLM, IntensityDirect, NGTDM, and Shape can accurately forecast the short-term efficacy of immunotherapy for HCC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leyellows完成签到 ,获得积分10
1秒前
2秒前
明亮无颜完成签到,获得积分10
2秒前
罗零完成签到 ,获得积分10
3秒前
susuna发布了新的文献求助10
5秒前
空白完成签到,获得积分10
5秒前
书起洛阳完成签到,获得积分20
6秒前
7秒前
美丽发布了新的文献求助10
11秒前
阿池完成签到 ,获得积分10
14秒前
snail01完成签到,获得积分10
14秒前
594612完成签到 ,获得积分10
14秒前
风中的傲安完成签到,获得积分20
15秒前
Nolan完成签到,获得积分10
16秒前
Cold-Drink-Shop完成签到,获得积分10
17秒前
orixero应助我讨厌科研采纳,获得10
17秒前
20秒前
小破网完成签到 ,获得积分0
21秒前
ever发布了新的文献求助10
21秒前
Orange应助卷毛采纳,获得30
22秒前
催催催完成签到,获得积分10
23秒前
小蘑菇应助zp采纳,获得10
24秒前
消消消消气完成签到 ,获得积分10
24秒前
26秒前
田様应助LJT采纳,获得10
27秒前
科研通AI2S应助哆啦A梦采纳,获得10
31秒前
Jasper应助哆啦A梦采纳,获得10
31秒前
小二郎应助fiee采纳,获得10
31秒前
dwls应助大萝贝采纳,获得10
31秒前
left_right完成签到,获得积分10
31秒前
31秒前
33秒前
liuniuniu发布了新的文献求助30
33秒前
爆米花应助奇奇怪怪采纳,获得10
33秒前
33秒前
34秒前
36秒前
36秒前
wanci应助flywee采纳,获得40
37秒前
热心市民小红花应助tzp采纳,获得10
38秒前
高分求助中
Sustainability in ’Tides Chemistry 1500
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Historia de la ciencia jurídica europea 600
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3069575
求助须知:如何正确求助?哪些是违规求助? 2723483
关于积分的说明 7481948
捐赠科研通 2370550
什么是DOI,文献DOI怎么找? 1257057
科研通“疑难数据库(出版商)”最低求助积分说明 609800
版权声明 596861