CT radiomics-based biomarkers can predict response to immunotherapy in hepatocellular carcinoma

免疫疗法 无线电技术 人工智能 阿达布思 计算机科学 朴素贝叶斯分类器 随机森林 肝细胞癌 机器学习 特征(语言学) 支持向量机 医学 肿瘤科 癌症 内科学 语言学 哲学
作者
Liang Qi,Yahui Zhu,Jinxin Li,Mingzhen Zhou,Baorui Liu,Jiu Chen,Jie Shen
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-70208-w
摘要

Hepatocellular Carcinoma (HCC) remains a leading cause of cancer deaths. Despite the rise of immunotherapies, many HCC patients don't benefit. There's a clear need for biomarkers to guide treatment decisions. This research aims to identify such biomarkers by combining radiological data and machine learning. We analyzed clinical and CT imaging data of 54 HCC patients undergoing immunotherapy. Radiologic features were examined to develop a model predicting short-term immunotherapy effects. We utilized 9 machine learning and 2 ensemble learning techniques using RapidMiner for model construction. We conducted the validation of the above feature combination using 29 HCC patients who received immunotherapy from another hospital, and tested and validated it using XGBoost combined with a genetic algorithm. In 54 HCC patients, radiomics features varied significantly between those with partial response (PR) and stable disease (SD). Key features in Gray Level Run Length Matrix (GLRLM) and in adjacent tissues' Intensity Direct, Neighborhood Gray Tone Difference Matrix (NGTDM), and Shape correlated with short-term immunotherapy efficacy. Selected feature combinations of 15, 19, and 8/15 features yielded better outcomes. Deep learning, random forest, and naive bayes outperformed other methods, with Bagging being more reliable than Adaboost. In the validation set of 29 HCC patients, the mentioned feature combination also demonstrated favorable performance. Furthermore, we achieved improved results when employing XGBoost in conjunction with a genetic algorithm for testing and validation. The machine learning model built with CT image features derived from GLCM, GLRLM, IntensityDirect, NGTDM, and Shape can accurately forecast the short-term efficacy of immunotherapy for HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失眠傥完成签到,获得积分10
刚刚
惜惜完成签到,获得积分10
1秒前
彭鑫完成签到,获得积分10
1秒前
hanlin完成签到,获得积分10
2秒前
Ming完成签到,获得积分10
2秒前
2秒前
落后的镜子完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
3秒前
AaronDon完成签到,获得积分10
4秒前
你是谁完成签到,获得积分10
4秒前
在水一方应助Feng5945采纳,获得10
5秒前
机智灵薇完成签到,获得积分10
5秒前
史迪仔完成签到,获得积分10
6秒前
娃娃菜妮完成签到,获得积分10
6秒前
研友_nvggxZ发布了新的文献求助10
7秒前
sure完成签到 ,获得积分10
7秒前
满增明发布了新的文献求助10
7秒前
加油少年完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
冯家源完成签到,获得积分10
9秒前
9秒前
CipherSage应助落后的镜子采纳,获得10
9秒前
9秒前
membrane应助机灵的成协采纳,获得10
10秒前
感性的花生完成签到,获得积分10
10秒前
10秒前
yxli完成签到,获得积分10
11秒前
lee完成签到,获得积分10
11秒前
吗喽完成签到,获得积分10
11秒前
Chief完成签到,获得积分10
11秒前
11秒前
13秒前
13秒前
火山蜗牛完成签到,获得积分10
14秒前
高又行发布了新的文献求助10
14秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257371
求助须知:如何正确求助?哪些是违规求助? 2899272
关于积分的说明 8304996
捐赠科研通 2568569
什么是DOI,文献DOI怎么找? 1395172
科研通“疑难数据库(出版商)”最低求助积分说明 652955
邀请新用户注册赠送积分活动 630727