Understanding thickness-dependent stability of tungsten-doped indium oxide transistors

材料科学 兴奋剂 光电子学 晶体管 氧化钨 氧化物 纳米技术 冶金 物理 电压 量子力学
作者
Hyunjin Kim,Hyun-Sik Choi,G.Q. Yun,Won-Ju Cho,Hamin Park
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:125 (17)
标识
DOI:10.1063/5.0228363
摘要

In this study, the influence of the thickness of the channel layer on the electrical properties and stability of tungsten-doped indium oxide (IWO) thin-film transistors (TFTs) was investigated. Although oxide-semiconductor TFTs, particularly indium gallium zinc oxide, are promising, problems related to oxygen vacancies have led to their instability. In contrast, IWO has proven to be a compelling alternative because of its robust resistance to oxygen vacancies. IWO TFTs with varying channel thicknesses (10, 20, and 30 nm) were fabricated, and the device parameters, such as threshold voltage (Vth), subthreshold swing (SS), field-effect mobility (μFE), and on/off current ratio (Ion/Ioff), were analyzed. It was found that as the channel thickness increased, Vth exhibited a negative shift and SS increased, indicating an increase in carrier concentration. This phenomenon is attributed to the bulk trap density, in particular to oxygen vacancies. Negative bias stress tests confirmed the influence of the oxygen vacancies, with thicker channels showing more pronounced shifts. Low-frequency noise measurements were consistent with the carrier number fluctuation model, indicating that defects within the channel region contribute to the observed noise. The study concludes that identifying an optimal channel thickness during device manufacturing is crucial for improved TFT performance, with 20 nm devices characterized by high μFE and comparable trap density to 10 nm. This study provides valuable insight into the nuanced relationship between the channel thickness, trap density, and electrical performance of IWO TFTs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助Miki采纳,获得10
1秒前
1秒前
2秒前
yan发布了新的文献求助10
2秒前
机密塔完成签到,获得积分10
3秒前
3秒前
jiayou发布了新的文献求助10
3秒前
桐桐应助晨晨晨采纳,获得10
4秒前
望TIAN发布了新的文献求助10
4秒前
4秒前
科研通AI6应助曹佳凝采纳,获得30
4秒前
captain龙完成签到 ,获得积分10
5秒前
Ava应助小刘采纳,获得10
5秒前
归远完成签到,获得积分10
5秒前
6秒前
Anderson732发布了新的文献求助10
7秒前
GY00完成签到 ,获得积分10
7秒前
7秒前
做好自己发布了新的文献求助10
8秒前
suiqing发布了新的文献求助10
8秒前
yaoccccchen完成签到,获得积分10
9秒前
9秒前
9秒前
吴仙女发布了新的文献求助10
9秒前
雪雪啊发布了新的文献求助10
9秒前
ZSFL完成签到,获得积分20
10秒前
11秒前
chlorine完成签到,获得积分10
11秒前
小二郎应助江流有声采纳,获得50
11秒前
12秒前
牧楊人发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
13秒前
14秒前
14秒前
15秒前
骨科小周完成签到,获得积分10
16秒前
1024完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321192
求助须知:如何正确求助?哪些是违规求助? 4462953
关于积分的说明 13888286
捐赠科研通 4354063
什么是DOI,文献DOI怎么找? 2391525
邀请新用户注册赠送积分活动 1385098
关于科研通互助平台的介绍 1354881