Understanding thickness-dependent stability of tungsten-doped indium oxide transistors

材料科学 兴奋剂 光电子学 晶体管 氧化钨 氧化物 纳米技术 冶金 物理 电压 量子力学
作者
Hyunjin Kim,Hyun-Sik Choi,G.Q. Yun,Won-Ju Cho,Hamin Park
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:125 (17)
标识
DOI:10.1063/5.0228363
摘要

In this study, the influence of the thickness of the channel layer on the electrical properties and stability of tungsten-doped indium oxide (IWO) thin-film transistors (TFTs) was investigated. Although oxide-semiconductor TFTs, particularly indium gallium zinc oxide, are promising, problems related to oxygen vacancies have led to their instability. In contrast, IWO has proven to be a compelling alternative because of its robust resistance to oxygen vacancies. IWO TFTs with varying channel thicknesses (10, 20, and 30 nm) were fabricated, and the device parameters, such as threshold voltage (Vth), subthreshold swing (SS), field-effect mobility (μFE), and on/off current ratio (Ion/Ioff), were analyzed. It was found that as the channel thickness increased, Vth exhibited a negative shift and SS increased, indicating an increase in carrier concentration. This phenomenon is attributed to the bulk trap density, in particular to oxygen vacancies. Negative bias stress tests confirmed the influence of the oxygen vacancies, with thicker channels showing more pronounced shifts. Low-frequency noise measurements were consistent with the carrier number fluctuation model, indicating that defects within the channel region contribute to the observed noise. The study concludes that identifying an optimal channel thickness during device manufacturing is crucial for improved TFT performance, with 20 nm devices characterized by high μFE and comparable trap density to 10 nm. This study provides valuable insight into the nuanced relationship between the channel thickness, trap density, and electrical performance of IWO TFTs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xr发布了新的文献求助10
1秒前
1秒前
大熊发布了新的文献求助10
2秒前
4秒前
6秒前
6秒前
916应助tian采纳,获得10
7秒前
游一发布了新的文献求助10
7秒前
8秒前
123完成签到 ,获得积分10
9秒前
小马甲应助xr采纳,获得10
9秒前
youasheng发布了新的文献求助10
10秒前
10秒前
ffffffff完成签到,获得积分10
10秒前
11秒前
da发布了新的文献求助10
12秒前
12秒前
寒天发布了新的文献求助10
13秒前
13秒前
RitaLee完成签到 ,获得积分10
13秒前
15秒前
Jenny完成签到,获得积分10
15秒前
yyyyyyy发布了新的文献求助10
16秒前
陆志琴完成签到,获得积分10
17秒前
rdd驳回了酷波er应助
17秒前
18秒前
研ZZ发布了新的文献求助10
18秒前
徐劳板发布了新的文献求助10
19秒前
Hoshiiii发布了新的文献求助10
20秒前
好好学习发布了新的文献求助10
22秒前
23秒前
23秒前
26秒前
27秒前
27秒前
28秒前
schnappi完成签到,获得积分10
28秒前
28秒前
29秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979779
求助须知:如何正确求助?哪些是违规求助? 3523794
关于积分的说明 11218782
捐赠科研通 3261278
什么是DOI,文献DOI怎么找? 1800526
邀请新用户注册赠送积分活动 879143
科研通“疑难数据库(出版商)”最低求助积分说明 807182