已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Hybrid price prediction method combining TCN-BiGRU and attention mechanism for battery-grade lithium carbonate

碳酸锂 电池(电) 计算机科学 机制(生物学) 人工智能 碳酸盐 锂(药物) 材料科学 心理学 化学 热力学 冶金 离子键合 离子 功率(物理) 物理 哲学 有机化学 认识论 精神科
作者
Zhanglin Peng,Tianci Yin,Xuhui Zhu,Xiaonong Lu,Xiaoyu Li
出处
期刊:Kybernetes [Emerald (MCB UP)]
标识
DOI:10.1108/k-05-2024-1228
摘要

Purpose To predict the price of battery-grade lithium carbonate accurately and provide proper guidance to investors, a method called MFTBGAM is proposed in this study. This method integrates textual and numerical information using TCN-BiGRU–Attention. Design/methodology/approach The Word2Vec model is initially employed to process the gathered textual data concerning battery-grade lithium carbonate. Subsequently, a dual-channel text-numerical extraction model, integrating TCN and BiGRU, is constructed to extract textual and numerical features separately. Following this, the attention mechanism is applied to extract fusion features from the textual and numerical data. Finally, the market price prediction results for battery-grade lithium carbonate are calculated and outputted using the fully connected layer. Findings Experiments in this study are carried out using datasets consisting of news and investor commentary. The findings reveal that the MFTBGAM model exhibits superior performance compared to alternative models, showing its efficacy in precisely forecasting the future market price of battery-grade lithium carbonate. Research limitations/implications The dataset analyzed in this study spans from 2020 to 2023, and thus, the forecast results are specifically relevant to this timeframe. Altering the sample data would necessitate repetition of the experimental process, resulting in different outcomes. Furthermore, recognizing that raw data might include noise and irrelevant information, future endeavors will explore efficient data preprocessing techniques to mitigate such issues, thereby enhancing the model’s predictive capabilities in long-term forecasting tasks. Social implications The price prediction model serves as a valuable tool for investors in the battery-grade lithium carbonate industry, facilitating informed investment decisions. By using the results of price prediction, investors can discern opportune moments for investment. Moreover, this study utilizes two distinct types of text information – news and investor comments – as independent sources of textual data input. This approach provides investors with a more precise and comprehensive understanding of market dynamics. Originality/value We propose a novel price prediction method based on TCN-BiGRU Attention for “text-numerical” information fusion. We separately use two types of textual information, news and investor comments, for prediction to enhance the model's effectiveness and generalization ability. Additionally, we utilize news datasets including both titles and content to improve the accuracy of battery-grade lithium carbonate market price predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HEIKU应助高山七石采纳,获得10
1秒前
直率铁身完成签到,获得积分10
2秒前
小炮仗完成签到 ,获得积分10
2秒前
yamo完成签到 ,获得积分10
6秒前
6秒前
高山七石完成签到,获得积分10
9秒前
万能图书馆应助仔细采纳,获得10
15秒前
AIKaikai给AIKaikai的求助进行了留言
16秒前
小确幸完成签到,获得积分10
17秒前
852应助小仙女采纳,获得10
18秒前
Soda完成签到,获得积分10
19秒前
啊哈完成签到 ,获得积分10
20秒前
24秒前
24秒前
潇洒诗槐发布了新的文献求助10
28秒前
仔细发布了新的文献求助10
28秒前
30秒前
星辰大海应助因几采纳,获得10
31秒前
俭朴蜜蜂完成签到 ,获得积分10
31秒前
34秒前
小仙女发布了新的文献求助10
35秒前
Omni完成签到,获得积分10
40秒前
gengsumin完成签到,获得积分10
40秒前
LNN发布了新的文献求助10
41秒前
杳鸢应助ISLAND采纳,获得30
44秒前
50秒前
51秒前
53秒前
bob发布了新的文献求助10
55秒前
汉堡包应助青柏采纳,获得10
58秒前
1分钟前
科研通AI2S应助bob采纳,获得10
1分钟前
Dece完成签到,获得积分20
1分钟前
bob完成签到,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI2S应助bob采纳,获得10
1分钟前
青柏发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3213078
求助须知:如何正确求助?哪些是违规求助? 2861888
关于积分的说明 8130856
捐赠科研通 2527823
什么是DOI,文献DOI怎么找? 1361707
科研通“疑难数据库(出版商)”最低求助积分说明 643516
邀请新用户注册赠送积分活动 615849