材料科学
钙钛矿(结构)
偶极子
分子
化学物理
光电子学
工程物理
纳米技术
化学工程
有机化学
物理
工程类
化学
作者
Deng Wang,Yongchun Li,Wen J. Li,Weichun Pan,Ruoshui Li,Shibo Wang,Fengli Liu,Zhang Lan,Jihuai Wu,Enmin Huang,Xugang Guo,Xuping Liu,Qinghua Li
标识
DOI:10.1002/adfm.202412068
摘要
Abstract Interface engineering has become the mainstream for improving the performance of perovskite solar cells (PSCs). Interfacial dipole (ID) molecules have emerged as a feasible and effective strategy to alleviate the charge carrier loss and energy loss in PSCs. Here, the three symmetrical donor–acceptor interfacial dipole molecules (named PzT, PzTE, and PzTN) are designed and synthesized with identical hole transport backbone and different anchoring groups. The ID molecule is introduced into the interface between the perovskite layer and the hole transport layer. The dipole moments of ID molecules regulate the surface work function and energy‐level alignment of perovskites, improve charge extraction, and reduce energy loss at the interface. Meanwhile, the anchoring groups of ID molecules coordinate with the defects on the surface of PVK and HTL, reduce interfacial trap state density and charge accumulation, and mitigate the carrier non‐radiative recombination losses. As a result, PzTN‐modified PSC achieved a champion power conversion efficiency of 25.34% with a photovoltage of 1.176 V and a fill factor (FF) of 83.27%, accompanied by almost undetectable hysteresis and excellent operating stability. This research demonstrates a feasible strategy for efficient and stable PSCs by interfacial dipole molecules.
科研通智能强力驱动
Strongly Powered by AbleSci AI