Modality Perception Learning-Based Determinative Factor Discovery for Multimodal Fake News Detection

决定性的 模态(人机交互) 感知 因子(编程语言) 心理学 计算机科学 人工智能 认知心理学 语言学 神经科学 哲学 程序设计语言
作者
Boyue Wang,WU Guang-chao,Xiaoyan Li,Junbin Gao,Yongli Hu,Baocai Yin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tnnls.2024.3446030
摘要

The dissemination of fake news, often fueled by exaggeration, distortion, or misleading statements, significantly jeopardizes public safety and shapes social opinion. Although existing multimodal fake news detection methods focus on multimodal consistency, they occasionally neglect modal heterogeneity, missing the opportunity to unearth the most related determinative information concealed within fake news articles. To address this limitation and extract more decisive information, this article proposes the modality perception learning-based determinative factor discovery (MoPeD) model. MoPeD optimizes the steps of feature extraction, fusion, and aggregation to adaptively discover determinants within both unimodality features and multimodality fusion features for the task of fake news detection. Specifically, to capture comprehensive information, the dual encoding module integrates a modal-consistent contrastive language-image pre-training (CLIP) pretrained encoder with a modal-specific encoder, catering to both explicit and implicit information. Motivated by the prompt strategy, the output features of the dual encoding module are complemented by learnable memory information. To handle modality heterogeneity during fusion, the multilevel cross-modality fusion module is introduced to deeply comprehend the complex implicit meaning within text and image. Finally, for aggregating unimodal and multimodal features, the modality perception learning module gauges the similarity between modalities to dynamically emphasize decisive modality features based on the cross-modal content heterogeneity scores. The experimental evaluations conducted on three public fake news datasets show that the proposed model is superior to other state-of-the-art fake news detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
CY发布了新的文献求助10
5秒前
李汀完成签到,获得积分20
6秒前
7秒前
7秒前
wfp完成签到,获得积分10
8秒前
太叔夜南完成签到,获得积分10
9秒前
凤凰山发布了新的文献求助10
11秒前
www完成签到 ,获得积分10
14秒前
CY完成签到,获得积分20
14秒前
儒雅儒雅完成签到,获得积分10
15秒前
酷炫的幻丝完成签到 ,获得积分10
15秒前
汉堡包应助负责的方盒采纳,获得30
15秒前
亮liang完成签到,获得积分10
16秒前
FashionBoy应助Larry1226采纳,获得10
17秒前
爆米花应助凤凰山采纳,获得10
17秒前
四十四次日落完成签到 ,获得积分10
18秒前
万幸鹿完成签到,获得积分10
18秒前
Rocky完成签到 ,获得积分10
21秒前
Collectice完成签到,获得积分10
21秒前
math-naive完成签到,获得积分10
21秒前
WLL完成签到,获得积分10
22秒前
领导范儿应助CY采纳,获得10
22秒前
爱吃肥牛完成签到,获得积分10
23秒前
臭臭完成签到,获得积分10
25秒前
Yara.H完成签到 ,获得积分10
26秒前
大青山完成签到 ,获得积分10
26秒前
量子星尘发布了新的文献求助10
27秒前
29秒前
学呀学完成签到 ,获得积分10
31秒前
凤凰山发布了新的文献求助10
33秒前
在水一方应助义气的灯泡采纳,获得10
35秒前
智智完成签到,获得积分10
37秒前
SW完成签到,获得积分10
39秒前
量子星尘发布了新的文献求助100
39秒前
无花果应助qsmei2020采纳,获得10
40秒前
zlm完成签到,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4262569
求助须知:如何正确求助?哪些是违规求助? 3795447
关于积分的说明 11899778
捐赠科研通 3442163
什么是DOI,文献DOI怎么找? 1888902
邀请新用户注册赠送积分活动 939592
科研通“疑难数据库(出版商)”最低求助积分说明 844651