Multi-Granularity Part Sampling Attention for Fine-Grained Visual Classification

判别式 粒度 计算机科学 过度拟合 人工智能 特征(语言学) 模式识别(心理学) 目标检测 采样(信号处理) 计算机视觉 数据挖掘 机器学习 人工神经网络 哲学 操作系统 滤波器(信号处理) 语言学
作者
Jiahui Wang,Qin Xu,Bo Jiang,Bin Luo,Jinhui Tang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4529-4542 被引量:4
标识
DOI:10.1109/tip.2024.3441813
摘要

Fine-grained visual classification aims to classify similar sub-categories with the challenges of large variations within the same sub-category and high visual similarities between different sub-categories. Recently, methods that extract semantic parts of the discriminative regions have attracted increasing attention. However, most existing methods extract the part features via rectangular bounding boxes by object detection module or attention mechanism, which makes it difficult to capture the rich shape information of objects. In this paper, we propose a novel Multi-Granularity Part Sampling Attention (MPSA) network for fine-grained visual classification. First, a novel multi-granularity part retrospect block is designed to extract the part information of different scales and enhance the high-level feature representation with discriminative part features of different granularities. Then, to extract part features of various shapes at each granularity, we propose part sampling attention, which can sample the implicit semantic parts on the feature maps comprehensively. The proposed part sampling attention not only considers the importance of sampled parts but also adopts the part dropout to reduce the overfitting issue. In addition, we propose a novel multi-granularity fusion method to highlight the foreground features and suppress the background noises with the assistance of the gradient class activation map. Experimental results demonstrate that the proposed MPSA achieves state-of-the-art performance on four commonly used fine-grained visual classification benchmarks. The source code is publicly available at https://github.com/mobulan/MPSA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
SYLH应助Zack采纳,获得30
刚刚
3秒前
映城应助白河采纳,获得30
3秒前
4秒前
解语花发布了新的文献求助10
5秒前
Rondab应助活泼的云朵采纳,获得10
6秒前
可爱的函函应助哇哈哈哈采纳,获得10
8秒前
珂珂子完成签到,获得积分10
10秒前
10秒前
12秒前
zjxu完成签到,获得积分20
13秒前
BREEZE发布了新的文献求助10
14秒前
丫头完成签到,获得积分10
14秒前
15秒前
机电虎发布了新的文献求助30
16秒前
研友_8RyzBZ发布了新的文献求助10
16秒前
18秒前
18秒前
科目三应助beiest采纳,获得10
18秒前
18秒前
21秒前
完美世界应助斯文的傲珊采纳,获得10
21秒前
刘刘发布了新的文献求助10
22秒前
22秒前
XiHuanChi完成签到,获得积分10
22秒前
机电虎完成签到,获得积分20
23秒前
23秒前
upupeasymoney发布了新的文献求助10
23秒前
26秒前
26秒前
27秒前
橙花完成签到 ,获得积分10
27秒前
27秒前
奥特曼发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
28秒前
咕噜咕噜发布了新的文献求助10
29秒前
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959141
求助须知:如何正确求助?哪些是违规求助? 3505468
关于积分的说明 11123941
捐赠科研通 3237159
什么是DOI,文献DOI怎么找? 1788988
邀请新用户注册赠送积分活动 871478
科研通“疑难数据库(出版商)”最低求助积分说明 802824