Multi-Granularity Part Sampling Attention for Fine-Grained Visual Classification

判别式 粒度 计算机科学 过度拟合 人工智能 特征(语言学) 模式识别(心理学) 目标检测 采样(信号处理) 计算机视觉 数据挖掘 机器学习 人工神经网络 哲学 语言学 操作系统 滤波器(信号处理)
作者
Jiahui Wang,Qin Xu,Bo Jiang,Bin Luo,Jinhui Tang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4529-4542
标识
DOI:10.1109/tip.2024.3441813
摘要

Fine-grained visual classification aims to classify similar sub-categories with the challenges of large variations within the same sub-category and high visual similarities between different sub-categories. Recently, methods that extract semantic parts of the discriminative regions have attracted increasing attention. However, most existing methods extract the part features via rectangular bounding boxes by object detection module or attention mechanism, which makes it difficult to capture the rich shape information of objects. In this paper, we propose a novel Multi-Granularity Part Sampling Attention (MPSA) network for fine-grained visual classification. First, a novel multi-granularity part retrospect block is designed to extract the part information of different scales and enhance the high-level feature representation with discriminative part features of different granularities. Then, to extract part features of various shapes at each granularity, we propose part sampling attention, which can sample the implicit semantic parts on the feature maps comprehensively. The proposed part sampling attention not only considers the importance of sampled parts but also adopts the part dropout to reduce the overfitting issue. In addition, we propose a novel multi-granularity fusion method to highlight the foreground features and suppress the background noises with the assistance of the gradient class activation map. Experimental results demonstrate that the proposed MPSA achieves state-of-the-art performance on four commonly used fine-grained visual classification benchmarks. The source code is publicly available at https://github.com/mobulan/MPSA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
coolkid发布了新的文献求助10
1秒前
活泼红牛发布了新的文献求助10
2秒前
3秒前
Alina1874完成签到,获得积分10
3秒前
4秒前
orixero应助大脑袋媛媛采纳,获得10
4秒前
5秒前
5秒前
ww完成签到,获得积分10
5秒前
yuke完成签到,获得积分20
6秒前
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
栗子应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
李健应助科研通管家采纳,获得10
7秒前
浅尝离白应助zshhay采纳,获得10
7秒前
8秒前
8秒前
Pana发布了新的文献求助10
8秒前
Joker发布了新的文献求助10
9秒前
蓬蒿发布了新的文献求助10
9秒前
9秒前
田様应助鲤鱼不吐泡泡采纳,获得10
11秒前
风雪丽人发布了新的文献求助30
12秒前
尛瞐慶成发布了新的文献求助10
13秒前
14秒前
JimmyFun发布了新的文献求助10
15秒前
shen5920发布了新的文献求助10
15秒前
凭栏听雨完成签到,获得积分20
16秒前
17秒前
毛豆爸爸应助biuesky采纳,获得10
18秒前
Joker完成签到 ,获得积分10
18秒前
evefei发布了新的文献求助30
19秒前
畅快寄容发布了新的文献求助10
19秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142116
求助须知:如何正确求助?哪些是违规求助? 2793077
关于积分的说明 7805362
捐赠科研通 2449427
什么是DOI,文献DOI怎么找? 1303232
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291