Predicting tissue distribution and tumor delivery of nanoparticles in mice using machine learning models

纳米颗粒 分布(数学) 计算机科学 人工智能 纳米技术 材料科学 数学 数学分析
作者
Kun Mi,Wei‐Chun Chou,Qiran Chen,Long Yuan,V. Kamineni,Yashas Kuchimanchi,Chunla He,Nancy A. Monteiro‐Riviere,Jim E. Riviere,Zhoumeng Lin
出处
期刊:Journal of Controlled Release [Elsevier]
卷期号:374: 219-229 被引量:42
标识
DOI:10.1016/j.jconrel.2024.08.015
摘要

Nanoparticles (NPs) can be designed for targeted delivery in cancer nanomedicine, but the challenge is a low delivery efficiency (DE) to the tumor site. Understanding the impact of NPs' physicochemical properties on target tissue distribution and tumor DE can help improve the design of nanomedicines. Multiple machine learning and artificial intelligence models, including linear regression, support vector machine, random forest, gradient boosting, and deep neural networks (DNN), were trained and validated to predict tissue distribution and tumor delivery based on NPs' physicochemical properties and tumor therapeutic strategies with the dataset from Nano-Tumor Database. Compared to other machine learning models, the DNN model had superior predictions of DE to tumors and major tissues. The determination coefficients (R2) for the test datasets were 0.41, 0.42, 0.45, 0.79, 0.87, and 0.83 for DE in tumor, heart, liver, spleen, lung, and kidney, respectively. All the R2 and root mean squared error (RMSE) results of the test datasets were similar to the 5-fold cross validation results. Feature importance analysis showed that the core material of NPs played an important role in output predictions among all physicochemical properties. Furthermore, multiple NP formulations with greater DE to the tumor were determined by the DNN model. To facilitate model applications, the final model was converted to a web dashboard. This model could serve as a high-throughput pre-screening tool to support the design of new and efficient nanomedicines with greater tumor DE and serve as an alternative tool to reduce, refine, and partially replace animal experimentation in cancer nanomedicine research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
25上岸完成签到,获得积分10
刚刚
元谷雪发布了新的文献求助10
1秒前
1秒前
王松桐完成签到,获得积分10
1秒前
Fliu完成签到,获得积分10
2秒前
2秒前
2秒前
77发布了新的文献求助10
2秒前
Nin完成签到,获得积分10
2秒前
ZZ发布了新的文献求助10
2秒前
zy发布了新的文献求助10
3秒前
只强完成签到,获得积分10
3秒前
研友_VZG7GZ应助keke采纳,获得10
3秒前
爱吃果冻发布了新的文献求助10
3秒前
4秒前
Orange应助梅雨季来信采纳,获得10
4秒前
元神发布了新的文献求助10
4秒前
科勒基侈发布了新的文献求助10
4秒前
6秒前
jewel9发布了新的文献求助10
6秒前
南桥发布了新的文献求助10
7秒前
嘞是举仔应助无辜从阳采纳,获得30
7秒前
不明完成签到 ,获得积分10
8秒前
凡凡发布了新的文献求助10
8秒前
9秒前
小白完成签到,获得积分10
9秒前
11秒前
元谷雪发布了新的文献求助10
12秒前
香蕉觅云应助77采纳,获得10
13秒前
赘婿应助阿正嗖啪采纳,获得10
13秒前
13秒前
慕青应助28551采纳,获得10
14秒前
CipherSage应助俏皮的吐司采纳,获得10
14秒前
15秒前
力劈华山完成签到,获得积分10
15秒前
科研通AI6应助fzzf采纳,获得10
16秒前
16秒前
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695408
求助须知:如何正确求助?哪些是违规求助? 5101761
关于积分的说明 15216105
捐赠科研通 4851704
什么是DOI,文献DOI怎么找? 2602676
邀请新用户注册赠送积分活动 1554320
关于科研通互助平台的介绍 1512360