Predicting tissue distribution and tumor delivery of nanoparticles in mice using machine learning models

纳米颗粒 分布(数学) 计算机科学 人工智能 纳米技术 材料科学 数学 数学分析
作者
Kun Mi,Wei‐Chun Chou,Qiran Chen,Long Yuan,V. Kamineni,Yashas Kuchimanchi,Chunla He,Nancy A. Monteiro‐Riviere,Jim E. Riviere,Zhoumeng Lin
出处
期刊:Journal of Controlled Release [Elsevier]
卷期号:374: 219-229 被引量:42
标识
DOI:10.1016/j.jconrel.2024.08.015
摘要

Nanoparticles (NPs) can be designed for targeted delivery in cancer nanomedicine, but the challenge is a low delivery efficiency (DE) to the tumor site. Understanding the impact of NPs' physicochemical properties on target tissue distribution and tumor DE can help improve the design of nanomedicines. Multiple machine learning and artificial intelligence models, including linear regression, support vector machine, random forest, gradient boosting, and deep neural networks (DNN), were trained and validated to predict tissue distribution and tumor delivery based on NPs' physicochemical properties and tumor therapeutic strategies with the dataset from Nano-Tumor Database. Compared to other machine learning models, the DNN model had superior predictions of DE to tumors and major tissues. The determination coefficients (R2) for the test datasets were 0.41, 0.42, 0.45, 0.79, 0.87, and 0.83 for DE in tumor, heart, liver, spleen, lung, and kidney, respectively. All the R2 and root mean squared error (RMSE) results of the test datasets were similar to the 5-fold cross validation results. Feature importance analysis showed that the core material of NPs played an important role in output predictions among all physicochemical properties. Furthermore, multiple NP formulations with greater DE to the tumor were determined by the DNN model. To facilitate model applications, the final model was converted to a web dashboard. This model could serve as a high-throughput pre-screening tool to support the design of new and efficient nanomedicines with greater tumor DE and serve as an alternative tool to reduce, refine, and partially replace animal experimentation in cancer nanomedicine research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lanmeiwei完成签到,获得积分10
刚刚
QH发布了新的文献求助10
刚刚
1秒前
李爱国应助慕昊强采纳,获得10
2秒前
李健应助多多采纳,获得10
2秒前
myelin发布了新的文献求助10
2秒前
Dana完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
Akim应助佐小叶采纳,获得10
3秒前
tender发布了新的文献求助10
3秒前
6秒前
6秒前
7秒前
7秒前
hkh发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
快乐的鱼完成签到,获得积分10
8秒前
科目三应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得30
9秒前
9秒前
赘婿应助科研通管家采纳,获得30
9秒前
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
小雨应助科研通管家采纳,获得10
9秒前
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
文艺萝莉应助科研通管家采纳,获得10
9秒前
Stella应助科研通管家采纳,获得30
9秒前
10秒前
10秒前
无奈的石头完成签到,获得积分10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
10秒前
orixero应助淡淡梦采纳,获得10
10秒前
文艺萝莉应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5826378
求助须知:如何正确求助?哪些是违规求助? 6014938
关于积分的说明 15569392
捐赠科研通 4946629
什么是DOI,文献DOI怎么找? 2664904
邀请新用户注册赠送积分活动 1610755
关于科研通互助平台的介绍 1565665