LSTGCN: Inductive Spatial Temporal Imputation Using Long Short-Term Dependencies

期限(时间) 插补(统计学) 计算机科学 数据挖掘 人工智能 机器学习 缺少数据 物理 量子力学
作者
Longji Huang,Jianbin Huang,He Li,Jiangtao Cui
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (9): 1-25 被引量:2
标识
DOI:10.1145/3690645
摘要

Spatial temporal forecasting of urban sensors is essentially important for many urban systems, such as intelligent transportation and smart cities. However, due to the problem of hardware failure or network failure, there are some missing values or missing monitoring sensors that need to be interpolated. Recent research on deep learning has made substantial progress on imputation problem, especially temporal aspect (i.e., time series imputation), while little attention has been paid to spatial aspect (both dynamic and static) and long-term temporal dependencies. In this article, we proposed a spatial temporal imputation model, named Long Short-Term Graph Convolution Networks (LSTGCN), which includes gated temporal extraction (GTE) module, multi-head attention-based temporal capture (MHAT) module, long-term periodic temporal encoding (LPTE) module, and bidirectional spatial graph convolution (BSGC) module. The GTE adopts a gated mechanism to filter short-term temporal information, while the MHAT utilizes position encoding to enhance the difference of each timestamps, then use multi-head attention to capture short-term temporal dependency. The BSGC is adopted to handle with spatial relationships between sensor nodes. And we design a periodic encoding technique to process long-term temporal dependencies. The BSGC handles spatial relationships between sensor nodes, and a periodic encoding technique is used to process long-term temporal dependencies. Our experimental analysis includes completion and forecasting tasks, as well as transfer and ablation analyses. The results show that our proposed model outperforms state-of-the-art baselines on real-world datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南遇完成签到,获得积分10
刚刚
zzm完成签到,获得积分10
刚刚
慕青应助嗯嗯采纳,获得10
2秒前
汉堡包应助ken采纳,获得10
2秒前
小小脆脆鲨完成签到 ,获得积分10
2秒前
4秒前
shu完成签到,获得积分10
4秒前
4秒前
5秒前
nmamtf发布了新的文献求助10
5秒前
5秒前
堀江真夏完成签到 ,获得积分10
6秒前
恐怖稽器人完成签到,获得积分10
6秒前
咸蛋超人完成签到,获得积分10
7秒前
7秒前
zzm发布了新的文献求助10
8秒前
8秒前
嘎嘎发布了新的文献求助10
8秒前
wwl007完成签到,获得积分10
8秒前
浮云客完成签到,获得积分10
8秒前
9秒前
绿蜡完成签到,获得积分10
9秒前
小杜完成签到,获得积分10
9秒前
WJF发布了新的文献求助10
10秒前
咸蛋超人发布了新的文献求助10
10秒前
12秒前
12秒前
西乡塘塘主完成签到,获得积分10
14秒前
科研通AI5应助小畅采纳,获得10
15秒前
15秒前
诸岩完成签到,获得积分10
17秒前
美好海瑶发布了新的文献求助10
17秒前
WJF完成签到,获得积分10
17秒前
17秒前
18秒前
浮游应助奇奇采纳,获得10
18秒前
turky90发布了新的文献求助10
19秒前
19秒前
19秒前
20秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5121136
求助须知:如何正确求助?哪些是违规求助? 4326371
关于积分的说明 13479415
捐赠科研通 4160135
什么是DOI,文献DOI怎么找? 2279852
邀请新用户注册赠送积分活动 1281637
关于科研通互助平台的介绍 1220557