亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SG-Fusion: A swin-transformer and graph convolution-based multi-modal deep neural network for glioma prognosis

计算机科学 卷积神经网络 人工智能 深度学习 机器学习 模式识别(心理学) 数据挖掘
作者
Minghan Fu,Ming Fang,Rayyan Azam Khan,Bo Liao,Zhanli Hu,Fang‐Xiang Wu
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:157: 102972-102972
标识
DOI:10.1016/j.artmed.2024.102972
摘要

The integration of morphological attributes extracted from histopathological images and genomic data holds significant importance in advancing tumor diagnosis, prognosis, and grading. Histopathological images are acquired through microscopic examination of tissue slices, providing valuable insights into cellular structures and pathological features. On the other hand, genomic data provides information about tumor gene expression and functionality. The fusion of these two distinct data types is crucial for gaining a more comprehensive understanding of tumor characteristics and progression. In the past, many studies relied on single-modal approaches for tumor diagnosis. However, these approaches had limitations as they were unable to fully harness the information from multiple data sources. To address these limitations, researchers have turned to multi-modal methods that concurrently leverage both histopathological images and genomic data. These methods better capture the multifaceted nature of tumors and enhance diagnostic accuracy. Nonetheless, existing multi-modal methods have, to some extent, oversimplified the extraction processes for both modalities and the fusion process. In this study, we presented a dual-branch neural network, namely SG-Fusion. Specifically, for the histopathological modality, we utilize the Swin-Transformer structure to capture both local and global features and incorporate contrastive learning to encourage the model to discern commonalities and differences in the representation space. For the genomic modality, we developed a graph convolutional network based on gene functional and expression level similarities. Additionally, our model integrates a cross-attention module to enhance information interaction and employs divergence-based regularization to enhance the model's generalization performance. Validation conducted on glioma datasets from the Cancer Genome Atlas unequivocally demonstrates that our SG-Fusion model outperforms both single-modal methods and existing multi-modal approaches in both survival analysis and tumor grading.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21秒前
22秒前
oldcat96发布了新的文献求助10
25秒前
33秒前
思源应助oldcat96采纳,获得10
34秒前
猕猴桃发布了新的文献求助30
38秒前
情怀应助lsq采纳,获得10
42秒前
54秒前
lsq发布了新的文献求助10
58秒前
量子星尘发布了新的文献求助10
59秒前
华仔应助毅毅采纳,获得30
1分钟前
1分钟前
yx_cheng应助科研通管家采纳,获得10
1分钟前
yx_cheng应助科研通管家采纳,获得10
1分钟前
希望天下0贩的0应助wyx采纳,获得10
1分钟前
oldcat96发布了新的文献求助10
1分钟前
紧张的书本完成签到,获得积分20
1分钟前
研友_VZG7GZ应助紧张的书本采纳,获得10
1分钟前
myg123完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
RAIN发布了新的文献求助10
2分钟前
wyx发布了新的文献求助10
2分钟前
李健的小迷弟应助bababiba采纳,获得10
2分钟前
2分钟前
追三完成签到 ,获得积分10
2分钟前
大个应助RAIN采纳,获得10
2分钟前
碳酸芙兰完成签到,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
毅毅发布了新的文献求助30
2分钟前
3分钟前
毅毅完成签到,获得积分10
3分钟前
清爽乐菱应助科研通管家采纳,获得30
3分钟前
3分钟前
3分钟前
3分钟前
Rondab应助firesquall采纳,获得10
3分钟前
3分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008109
求助须知:如何正确求助?哪些是违规求助? 3547893
关于积分的说明 11298611
捐赠科研通 3282850
什么是DOI,文献DOI怎么找? 1810216
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188