亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SG-Fusion: A swin-transformer and graph convolution-based multi-modal deep neural network for glioma prognosis

计算机科学 卷积神经网络 人工智能 深度学习 机器学习 模式识别(心理学) 数据挖掘
作者
Minghan Fu,Ming Fang,Rayyan Azam Khan,Bo Liao,Zhanli Hu,Fang‐Xiang Wu
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:157: 102972-102972 被引量:5
标识
DOI:10.1016/j.artmed.2024.102972
摘要

The integration of morphological attributes extracted from histopathological images and genomic data holds significant importance in advancing tumor diagnosis, prognosis, and grading. Histopathological images are acquired through microscopic examination of tissue slices, providing valuable insights into cellular structures and pathological features. On the other hand, genomic data provides information about tumor gene expression and functionality. The fusion of these two distinct data types is crucial for gaining a more comprehensive understanding of tumor characteristics and progression. In the past, many studies relied on single-modal approaches for tumor diagnosis. However, these approaches had limitations as they were unable to fully harness the information from multiple data sources. To address these limitations, researchers have turned to multi-modal methods that concurrently leverage both histopathological images and genomic data. These methods better capture the multifaceted nature of tumors and enhance diagnostic accuracy. Nonetheless, existing multi-modal methods have, to some extent, oversimplified the extraction processes for both modalities and the fusion process. In this study, we presented a dual-branch neural network, namely SG-Fusion. Specifically, for the histopathological modality, we utilize the Swin-Transformer structure to capture both local and global features and incorporate contrastive learning to encourage the model to discern commonalities and differences in the representation space. For the genomic modality, we developed a graph convolutional network based on gene functional and expression level similarities. Additionally, our model integrates a cross-attention module to enhance information interaction and employs divergence-based regularization to enhance the model's generalization performance. Validation conducted on glioma datasets from the Cancer Genome Atlas unequivocally demonstrates that our SG-Fusion model outperforms both single-modal methods and existing multi-modal approaches in both survival analysis and tumor grading.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
iorpi完成签到,获得积分10
4秒前
bkagyin应助一事无成彭某人采纳,获得10
5秒前
8秒前
Viiigo完成签到,获得积分10
9秒前
xiao完成签到 ,获得积分10
12秒前
Criminology34应助科研通管家采纳,获得10
14秒前
彭于晏应助科研通管家采纳,获得10
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
Cu完成签到 ,获得积分10
24秒前
无昵称完成签到 ,获得积分10
38秒前
浮游应助lx840518采纳,获得10
40秒前
李健的小迷弟应助fsz采纳,获得10
45秒前
48秒前
迷路的映安应助oleskarabach采纳,获得10
1分钟前
1分钟前
欢呼若南完成签到,获得积分10
1分钟前
欢呼若南发布了新的文献求助10
1分钟前
leapper完成签到 ,获得积分10
1分钟前
培培完成签到 ,获得积分10
1分钟前
1分钟前
蛋挞发霉了完成签到,获得积分10
1分钟前
1分钟前
裂头蚴发布了新的文献求助10
2分钟前
2分钟前
加缪发布了新的文献求助10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
fsz发布了新的文献求助10
2分钟前
舒服的西装完成签到,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助150
2分钟前
张兔子完成签到 ,获得积分10
2分钟前
早点发布了新的文献求助10
3分钟前
Kevin完成签到 ,获得积分10
3分钟前
阿布完成签到,获得积分10
3分钟前
小赵完成签到,获得积分10
3分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
乐乐应助科研通管家采纳,获得10
4分钟前
充电宝应助科研通管家采纳,获得10
4分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5137259
求助须知:如何正确求助?哪些是违规求助? 4337127
关于积分的说明 13511092
捐赠科研通 4175660
什么是DOI,文献DOI怎么找? 2289571
邀请新用户注册赠送积分活动 1290099
关于科研通互助平台的介绍 1231727