SG-Fusion: A swin-transformer and graph convolution-based multi-modal deep neural network for glioma prognosis

计算机科学 变压器 人工智能 情态动词 融合 人工神经网络 图形 胶质瘤 卷积(计算机科学) 理论计算机科学 电气工程 医学 电压 工程类 材料科学 癌症研究 语言学 哲学 高分子化学
作者
Minghan Fu,Ming Fang,Rayyan Azam Khan,Erliang Li,Zhanli Hu,Fang‐Xiang Wu
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:: 102972-102972
标识
DOI:10.1016/j.artmed.2024.102972
摘要

The integration of morphological attributes extracted from histopathological images and genomic data holds significant importance in advancing tumor diagnosis, prognosis, and grading. Histopathological images are acquired through microscopic examination of tissue slices, providing valuable insights into cellular structures and pathological features. On the other hand, genomic data provides information about tumor gene expression and functionality. The fusion of these two distinct data types is crucial for gaining a more comprehensive understanding of tumor characteristics and progression. In the past, many studies relied on single-modal approaches for tumor diagnosis. However, these approaches had limitations as they were unable to fully harness the information from multiple data sources. To address these limitations, researchers have turned to multi-modal methods that concurrently leverage both histopathological images and genomic data. These methods better capture the multifaceted nature of tumors and enhance diagnostic accuracy. Nonetheless, existing multi-modal methods have, to some extent, oversimplified the extraction processes for both modalities and the fusion process. In this study, we presented a dual-branch neural network, namely SG-Fusion. Specifically, for the histopathological modality, we utilize the Swin-Transformer structure to capture both local and global features and incorporate contrastive learning to encourage the model to discern commonalities and differences in the representation space. For the genomic modality, we developed a graph convolutional network based on gene functional and expression level similarities. Additionally, our model integrates a cross-attention module to enhance information interaction and employs divergence-based regularization to enhance the model's generalization performance. Validation conducted on glioma datasets from the Cancer Genome Atlas unequivocally demonstrates that our SG-Fusion model outperforms both single-modal methods and existing multi-modal approaches in both survival analysis and tumor grading.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
妮夏完成签到,获得积分10
刚刚
小鸭子应助海狗采纳,获得10
刚刚
Tomn完成签到,获得积分10
1秒前
神秘人X完成签到,获得积分10
1秒前
CipherSage应助深情谷冬采纳,获得10
1秒前
懵懂小尉发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
阿雷发布了新的文献求助10
3秒前
矮小的柠檬完成签到,获得积分10
3秒前
玻璃瓶完成签到,获得积分10
3秒前
3秒前
顺心凡灵完成签到,获得积分10
3秒前
3秒前
L沐完成签到,获得积分10
4秒前
11发布了新的文献求助10
4秒前
张志迪发布了新的文献求助30
5秒前
慕青应助乐观的冰珍采纳,获得10
5秒前
小飞飞发布了新的文献求助10
6秒前
6秒前
所所应助atension4采纳,获得10
6秒前
飞羽完成签到,获得积分10
6秒前
我不爱池鱼应助嘟嘟采纳,获得10
6秒前
从容藏花关注了科研通微信公众号
6秒前
ccerr发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
烟花应助马小翠采纳,获得30
8秒前
时尚海安完成签到,获得积分10
8秒前
得得得得得完成签到,获得积分10
9秒前
9秒前
xhjh03发布了新的文献求助10
9秒前
10秒前
幽默柚子完成签到,获得积分10
10秒前
可靠幼旋应助机灵猕猴桃采纳,获得10
10秒前
早睡早起完成签到 ,获得积分10
10秒前
嘉林完成签到,获得积分20
11秒前
铁观音发布了新的文献求助10
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305153
求助须知:如何正确求助?哪些是违规求助? 2939026
关于积分的说明 8491012
捐赠科研通 2613498
什么是DOI,文献DOI怎么找? 1427461
科研通“疑难数据库(出版商)”最低求助积分说明 663007
邀请新用户注册赠送积分活动 647648