Predicting the irrelevant: Neural effects of distractor predictability depend on load

可预测性 计算机科学 认知心理学 人工神经网络 人工智能 心理学 数学 统计
作者
Troby Ka‐Yan Lui,Jonas Obleser,Malte Wöstmann
标识
DOI:10.1101/2024.08.30.610431
摘要

Abstract Distraction is ubiquitous in human environments. Distracting input is often predictable, but we do not understand whether and under which circumstances humans form and employ predictions about the identity of an expected distractor. Here we ask whether predictable distractors are able to reduce uncertainty in updating the internal predictive model. We show that utilising a predictable distractor identity is not fully automatic but in part dependent on available resources. In an auditory spatial n-back task, listeners ( n = 33) attended to spoken numbers presented to one ear and detected repeating items. Distracting numbers presented to the other ear either followed a predictable (i.e., repetitive) sequence or were unpredictable. We used electroencephalography (EEG) to uncover neural responses to predictable versus unpredictable auditory distractors, as well as their dependence on perceptual and cognitive load. Neurally, unpredictable distractors induced a sign-reversed lateralization of pre-stimulus alpha oscillations (∼10 Hz) and larger amplitude of the stimulus-evoked P2 event-related potential component. Under low versus high memory load, distractor predictability increased the magnitude of the frontal negativity component. Behaviourally, predictable distractors under low task demands (i.e., good signal-to-noise ratio and low memory load) made participants adopt a less conservative (i.e., more optimal) response strategy. We conclude that predictable distractors decrease uncertainty and reduce the need for updating the internal predictive model. In turn, unpredictable distractors mislead proactive spatial attention orientation, elicit larger neural responses and put higher demand on memory. Significance statement Selective attention enables enhancement of goal-relevant sensory input and suppression of distraction. Sensory inputs in human environments are coined by statistical regularities that allow prediction. We do not understand how the brain’s implementation of selective attention benefits from predictability of distracting input. Here, we present evidence from electroencephalography (EEG) to show that the listening brain extracts statistical regularities from a sequence of irrelevant speech items. Predictable distractors reduce the bias of spatial attention to the distractor and suppress the distractor-evoked neural response. Additional modulation of neural and behavioral responses by task load suggests that predicting distractor identity is not fully automatic but constrained by available resources. We conclude that predictable distractors reduce the need for updating the internal predictive model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助生物kooqx采纳,获得10
1秒前
Owen应助漆唐采纳,获得10
1秒前
活力安南完成签到,获得积分10
1秒前
漂亮的雪糕完成签到,获得积分10
2秒前
Accept应助危机的觅风采纳,获得20
2秒前
2秒前
于海丽完成签到,获得积分10
2秒前
万能图书馆应助AAA采纳,获得10
2秒前
3秒前
yyyhhh发布了新的文献求助10
3秒前
wxs完成签到,获得积分10
3秒前
正直涔雨完成签到,获得积分20
3秒前
三景发布了新的文献求助30
3秒前
3秒前
DQ2pi完成签到 ,获得积分10
3秒前
科研通AI5应助hannah采纳,获得10
4秒前
4秒前
xdf发布了新的文献求助10
5秒前
拉长的店员完成签到,获得积分10
5秒前
斯文败类应助李大力采纳,获得10
5秒前
大个应助aaronpancn采纳,获得10
5秒前
6秒前
collapsar1完成签到,获得积分10
7秒前
小李完成签到,获得积分20
7秒前
NJQ发布了新的文献求助10
7秒前
酷波er应助发顶刊采纳,获得10
7秒前
江江发布了新的文献求助30
8秒前
94line完成签到 ,获得积分10
8秒前
9秒前
木兆完成签到,获得积分10
9秒前
9秒前
10秒前
燕十三发布了新的文献求助10
11秒前
欢呼梨愁发布了新的文献求助10
11秒前
11秒前
虚幻莹完成签到,获得积分20
11秒前
HPP完成签到,获得积分10
12秒前
12秒前
12秒前
mushen完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Covalent Organic Frameworks(没有ACS in fous 库的就不要上传了,不要下preview这个给我) 2000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3529023
求助须知:如何正确求助?哪些是违规求助? 3109116
关于积分的说明 9292481
捐赠科研通 2806897
什么是DOI,文献DOI怎么找? 1540695
邀请新用户注册赠送积分活动 717315
科研通“疑难数据库(出版商)”最低求助积分说明 710047