Uric acid-to-high-density lipoprotein cholesterol ratio and osteoporosis: Evidence from the national health and nutrition examination survey

医学 骨质疏松症 全国健康与营养检查调查 逻辑回归 股骨颈 骨矿物 横断面研究 内科学 线性回归 人口学 人口 环境卫生 病理 机器学习 社会学 计算机科学
作者
Zeyu Liu,Yuchen Tang,Yingming Sun,Lei Miao,Minghuang Cheng,Xiaohan Pan,Zhenming Hu,Jie Hao
出处
期刊:Journal of orthopaedic surgery [SAGE]
卷期号:32 (3)
标识
DOI:10.1177/10225536241293489
摘要

Background: The uric acid-to-high-density lipoprotein cholesterol ratio (UHR) has emerged as a novel indicator of inflammatory and metabolic status. This study aims to examine the association between UHR and bone mineral density (BMD), as well as the risk of osteoporosis, in individuals aged ≥50 years. Methods: This cross-sectional study used data from the National Health and Nutrition Examination Survey, focusing on participants aged ≥50 years. Femoral neck BMD (FN-BMD) was measured using dual-energy X-ray absorptiometry. Linear regression models were employed to examine the association between UHR and FN-BMD. Additionally, generalised additive models were used to assess the nonlinear relationship between UHR and FN-BMD. Logistic regression models were employed to evaluate the association between UHR and the risk of osteoporosis. Results: Finally, the study included 2963 adults with a mean age of 64.16 ± 8.92 years. Linear regression analyses revealed a positive association between UHR and FN-BMD, regardless of covariate adjustments. Logistic regression analyses indicated that elevated UHR was associated with a reduced risk of osteoporosis with or without covariate adjustments. Subgroup analyses revealed that the positive association between UHR and BMD was significant in individuals aged ≥65 years but not in those aged 50 to 64 years. Interaction analyses by age showed significant differences after adjusting for all covariates. Conclusions: Clinicians should be vigilant regarding the potential risk of osteoporosis in individuals with a low UHR. UHR might serve as a risk indicator for osteoporosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
_蝴蝶小姐完成签到,获得积分10
1秒前
诗轩发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
迟大猫应助乐乱采纳,获得10
3秒前
万能图书馆应助派大星采纳,获得10
4秒前
FashionBoy应助娜行采纳,获得10
5秒前
5秒前
传奇3应助后知后觉采纳,获得10
6秒前
6秒前
6秒前
科研通AI2S应助Chem is try采纳,获得10
6秒前
7秒前
a方舟发布了新的文献求助10
7秒前
寒冷书竹发布了新的文献求助10
7秒前
7秒前
hhh发布了新的文献求助10
7秒前
顾矜应助富婆嘉嘉子采纳,获得10
7秒前
7秒前
7秒前
8秒前
江风海韵完成签到,获得积分10
8秒前
火星上的从雪完成签到,获得积分10
8秒前
在水一方应助kai采纳,获得10
8秒前
打打应助留胡子的青柏采纳,获得10
9秒前
9秒前
zhanghw发布了新的文献求助10
9秒前
Frank完成签到,获得积分10
9秒前
桐桐应助小喵采纳,获得10
9秒前
香蕉觅云应助执笔客采纳,获得10
9秒前
light完成签到 ,获得积分10
9秒前
你仔细听完成签到,获得积分10
10秒前
10秒前
Sailzyf完成签到,获得积分10
10秒前
抓恐龙发布了新的文献求助10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672