Uric acid-to-high-density lipoprotein cholesterol ratio and osteoporosis: Evidence from the national health and nutrition examination survey

医学 骨质疏松症 全国健康与营养检查调查 逻辑回归 股骨颈 骨矿物 横断面研究 内科学 线性回归 人口学 人口 环境卫生 病理 计算机科学 机器学习 社会学
作者
Zeyu Liu,Yuchen Tang,Yingming Sun,Lei Miao,Minghuang Cheng,Xiaohan Pan,Zhenming Hu,Jie Hao
出处
期刊:Journal of orthopaedic surgery [SAGE]
卷期号:32 (3)
标识
DOI:10.1177/10225536241293489
摘要

Background: The uric acid-to-high-density lipoprotein cholesterol ratio (UHR) has emerged as a novel indicator of inflammatory and metabolic status. This study aims to examine the association between UHR and bone mineral density (BMD), as well as the risk of osteoporosis, in individuals aged ≥50 years. Methods: This cross-sectional study used data from the National Health and Nutrition Examination Survey, focusing on participants aged ≥50 years. Femoral neck BMD (FN-BMD) was measured using dual-energy X-ray absorptiometry. Linear regression models were employed to examine the association between UHR and FN-BMD. Additionally, generalised additive models were used to assess the nonlinear relationship between UHR and FN-BMD. Logistic regression models were employed to evaluate the association between UHR and the risk of osteoporosis. Results: Finally, the study included 2963 adults with a mean age of 64.16 ± 8.92 years. Linear regression analyses revealed a positive association between UHR and FN-BMD, regardless of covariate adjustments. Logistic regression analyses indicated that elevated UHR was associated with a reduced risk of osteoporosis with or without covariate adjustments. Subgroup analyses revealed that the positive association between UHR and BMD was significant in individuals aged ≥65 years but not in those aged 50 to 64 years. Interaction analyses by age showed significant differences after adjusting for all covariates. Conclusions: Clinicians should be vigilant regarding the potential risk of osteoporosis in individuals with a low UHR. UHR might serve as a risk indicator for osteoporosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助999采纳,获得10
刚刚
KTaoL发布了新的文献求助10
1秒前
1秒前
3秒前
Orange应助WWW采纳,获得10
3秒前
4秒前
讴歌完成签到,获得积分10
4秒前
Ava应助动人的ccc采纳,获得10
4秒前
赘婿应助天线短路宝宝采纳,获得10
5秒前
大个应助可可杨采纳,获得10
5秒前
华仔应助xlz采纳,获得10
5秒前
脑洞疼应助逢投必中采纳,获得10
6秒前
7秒前
欢喜发卡发布了新的文献求助10
8秒前
haowu发布了新的文献求助10
9秒前
wxl完成签到,获得积分20
9秒前
10秒前
腼腆的洪纲完成签到,获得积分10
14秒前
动人的ccc发布了新的文献求助10
15秒前
16秒前
我是老大应助个性的帽子采纳,获得10
16秒前
17秒前
17秒前
18秒前
niuhulu_yue完成签到,获得积分10
19秒前
19秒前
21秒前
逢投必中发布了新的文献求助10
21秒前
21秒前
包容友灵发布了新的文献求助10
22秒前
傻子与白痴完成签到,获得积分20
23秒前
可可杨发布了新的文献求助10
24秒前
科目三应助读书破万卷采纳,获得10
25秒前
27秒前
27秒前
27秒前
听风随影发布了新的文献求助10
28秒前
执着月饼完成签到,获得积分10
28秒前
曹沛岚完成签到,获得积分10
29秒前
小巧代芙完成签到,获得积分10
30秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157400
求助须知:如何正确求助?哪些是违规求助? 2808877
关于积分的说明 7878622
捐赠科研通 2467207
什么是DOI,文献DOI怎么找? 1313264
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919