量子点
同种类的
纳米技术
聚苯乙烯
化学
材料科学
物理
有机化学
统计物理学
聚合物
作者
Shixiang Yang,Wenjin Hu,Shengyang Wang,Xi Li,Liusheng Lei,Xiaxia Wei,Huai Lin
标识
DOI:10.1016/j.bios.2024.116716
摘要
Accurately differentiating respiratory diseases caused by viruses is challenging because of the similarity in their early or clinical symptoms. Moreover, different infection sources require different treatments. However, the current diagnostic methods have limited differentiating efficiency and sensitivity. We developed a dual-system immunosensor with a bilayer fluorescent label as a signal amplifier for the on-site, sensitive, and accurate identification of multiple respiratory viruses (RVs). The nanomaterial, comprising a polystyrene (PS) nanosphere core encapsulated by two layers of CdSe@ZnS-COOH quantum dots (QDs), outperforms the conventional color and fluorescent labels in RV detection. The dual-system detection platform, comprising a PS@DQD-based lateral flow immunoassay (LFIA) and a PS@DQD-based homogeneous sensor, enables qualitative and quantitative screening of multiple respiratory viruses within 10 and 30 min, respectively, depending on the specific detection requirements for different application scenarios. This remarkable method provides 51.2 to 1000 times sensitivity improvement over commercial antigen detection kits and greater than 12.5 to 100 times improvement over QD-based immunosensors. Furthermore, we comprehensively evaluated the specificity, reproducibility, and stability of the integrated dual-system detection platform, demonstrating its reliability. Remarkably, the respiratory viral testing was validated using biological samples, thus illustrating its promise and convenience in the detection of respiratory viruses.
科研通智能强力驱动
Strongly Powered by AbleSci AI