Controlling Homophily in Social Network Regression Analysis by Machine Learning

同性恋 计算机科学 回归分析 社会网络分析 机器学习 回归 社交网络(社会语言学) 人工智能 计量经济学 心理学 统计 数学 社会化媒体 社会心理学 万维网
作者
Xuanqi Liu,Ke‐Wei Huang
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2022.0287
摘要

Across social science disciplines, empirical studies related to social networks have become the most popular research subjects in recent years. A frequently examined topic within these studies is the estimation of peer influence while controlling for homophily effects. However, although researchers may have access to all observable homophily variables, there is scarce literature addressing latent homophily effects stemming from unobservable features. Recent endeavors have demonstrated the efficacy of node embeddings derived from network structure in controlling latent homophily. Inspired by the network embedding research, this study introduces two methods that integrate node embeddings to better control latent homophily, particularly the nonlinear latent homophily effect. The first method uses double machine learning in the partially linear regression literature to alleviate estimation bias. The second method estimates peer influence effects directly by a novel neural network model. Our experimentation results show that our approaches outperform existing estimators in reducing the omitted variable bias due to homophily effects in network regression models. Theoretical analysis of two new estimation methods is also provided in this paper. History: Accepted by Ram Ramesh, Area Editor for Data Science and Machine Learning. Funding: This research is supported by the National Research Foundation, Singapore under its Industry Alignment Fund - Pre-positioning (IAF-PP) Funding Initiative [Grant A-0003504-02-00]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0287 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2022.0287 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YHL完成签到 ,获得积分10
1秒前
2秒前
sdl发布了新的文献求助10
3秒前
3秒前
我是老大应助zhouleiwang采纳,获得10
4秒前
5秒前
wanci应助JRY采纳,获得10
5秒前
6秒前
我们发布了新的文献求助10
6秒前
材化小将军完成签到,获得积分10
6秒前
科研通AI5应助dablack采纳,获得10
7秒前
shows发布了新的文献求助10
7秒前
所所应助Rr采纳,获得10
7秒前
10秒前
黄平平发布了新的文献求助20
11秒前
叫滚滚发布了新的文献求助10
12秒前
科目三应助梦在彼岸采纳,获得10
13秒前
今后应助朴实以松采纳,获得200
13秒前
shuangcheng发布了新的文献求助10
14秒前
16秒前
上官若男应助hahhh7采纳,获得10
16秒前
17秒前
19秒前
23秒前
26秒前
26秒前
26秒前
28秒前
123456完成签到,获得积分10
29秒前
鲤鱼丝完成签到,获得积分10
29秒前
29秒前
123发布了新的文献求助10
30秒前
可爱的函函应助调皮思真采纳,获得10
30秒前
JRY发布了新的文献求助10
31秒前
32秒前
33秒前
科研通AI2S应助美丽星期五采纳,获得10
33秒前
Orange应助ljs采纳,获得10
34秒前
学习使我快乐完成签到,获得积分10
36秒前
36秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3730337
求助须知:如何正确求助?哪些是违规求助? 3275096
关于积分的说明 9991049
捐赠科研通 2990706
什么是DOI,文献DOI怎么找? 1641231
邀请新用户注册赠送积分活动 779610
科研通“疑难数据库(出版商)”最低求助积分说明 748331