硒
铜
杂原子
锌
材料科学
氧化还原
催化作用
水溶液
Atom(片上系统)
无机化学
纳米技术
冶金
化学
有机化学
戒指(化学)
计算机科学
嵌入式系统
作者
Huiting Xu,Peng Guo,Chunli Li,Jing Gao,Honghai Wang,Wenchao Peng,Jiapeng Liu
标识
DOI:10.1002/adfm.202415016
摘要
Abstract Aqueous zinc‐selenium (Zn‐Se) batteries have garnered much attention due to their inherent safety and high specific capacity. Unfortunately, the problem of sluggish redox reaction represents a significant obstacle to the development of aqueous Zn‐Se batteries. Here, a nitrogen‐phosphorus asymmetrically coordinated copper single atom catalytic host material (CuN 3 P 1 @C) is synthesized for an aqueous Zn‐Se battery. The CuN 3 P 1 @C host material exhibits a rich porous structure, high‐loading of Cu single atoms, and unique asymmetric coordination environment, which significantly reduces the reaction energy barrier for the redox reaction between Se and Zn, enhancing the electrochemical performance of the aqueous Zn‐Se battery. Consequently, the Se/CuN 3 P 1 @C cathode achieves a high specific capacity of 756 mAh g −1 at 0.2 A g −1 and cycling stability of 4 000 cycles at 5.0 A g −1 (capacity decay of 0.0044% per cycle). Meanwhile, the conversion mechanism of an aqueous Zn‐Se battery is systematically explored via systematical characteristics and density functional theory calculations. This work opens up a novel approach to boosting the redox reaction of aqueous Zn‐Se batteries by modulating single atom‐based host materials via heteroatoms.
科研通智能强力驱动
Strongly Powered by AbleSci AI