Radiomic Machine Learning in Invasive Ductal Breast Cancer: Prediction of Ki-67 Expression Level Based on Radiomics of DCE-MRI

医学 切断 乳腺癌 置信区间 无线电技术 接收机工作特性 内科学 曲线下面积 曲线下面积 磁共振成像 预测值 癌症 肿瘤科 核医学 放射科 物理 量子力学 药代动力学
作者
Huan Yang,Wenxi Wang,Zhiyong Cheng,Tao Zheng,Cheng Cheng,Mengyu Cheng,Zhanqiu Wang
出处
期刊:Technology in Cancer Research & Treatment [SAGE Publishing]
卷期号:23
标识
DOI:10.1177/15330338241288751
摘要

Purpose Our study aimed to investigate the potential of radiomics with DCE-MRI for predicting Ki-67 expression in invasive ductal breast cancer. Method We conducted a retrospective study including 223 patients diagnosed with invasive ductal breast cancer. Radiomics features were extracted from DCE-MRI using 3D-Slicer software. Two Ki-67 expression cutoff values (20% and 29%) were examined. Patients were divided into training (70%) and test (30%) sets. The Elastic Net method selected relevant features, and five machine-learning models were established. Radiomics models were created from intratumoral, peritumoral, and combined regions. Performance was assessed using ROC curves, accuracy, sensitivity, and specificity. Result For a Ki-67 cutoff value of 20%, the combined model exhibited the highest performance, with area under the curve (AUC) values of 0.838 (95% confidence interval (CI): 0.774–0.897) for the training set and 0.863 (95% CI: 0.764–0.949) for the test set. The AUC values for the tumor model were 0.816 (95% CI: 0.745–0.880) and 0.830 (95% CI: 0.724–0.916), and for the peritumor model were 0.790 (95% CI: 0.711–0.857) and 0.808 (95% CI: 0.682–0.910). When the Ki-67 cutoff value was set at 29%, the combined model also demonstrated superior predictive ability in both training set (AUC: 0.796; 95% CI: 0.724–0.862) and the test set (AUC: 0.823; 95% CI: 0.723–0.911). The AUC values for the tumor model were 0.785 (95% CI: 0.708–0.861) and 0.784 (95% CI: 0.663–0.882), and for the peritumor model were 0.773 (95% CI: 0.690–0.844) and 0.729 (95% CI: 0.603–0.847). Conclusion Radiomics with DCE-MRI can predict Ki-67 expression in invasive ductal breast cancer. Integrating radiomics features from intratumoral and peritumoral regions yields a dependable prognostic model, facilitating pre-surgical detection and treatment decisions. This holds potential for commercial diagnostic tools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
weijie发布了新的文献求助10
刚刚
Jenaloe发布了新的文献求助10
1秒前
maofeng发布了新的文献求助10
1秒前
NexusExplorer应助abcc1234采纳,获得10
1秒前
小刺猬完成签到,获得积分10
1秒前
辛辛点灯完成签到 ,获得积分10
2秒前
fsky发布了新的文献求助30
2秒前
桐桐应助yyl采纳,获得10
3秒前
ryt完成签到,获得积分10
3秒前
void科学家发布了新的文献求助10
3秒前
wwk发布了新的文献求助10
3秒前
ilzhuzhu发布了新的文献求助10
3秒前
wxd完成签到,获得积分10
5秒前
5秒前
6秒前
9秒前
昭奚完成签到 ,获得积分10
10秒前
晚凝完成签到,获得积分10
10秒前
Yan0909完成签到,获得积分10
10秒前
薛定谔的猫完成签到,获得积分10
10秒前
李健应助自然有手就行采纳,获得10
10秒前
罗中翠完成签到,获得积分10
11秒前
sdasd发布了新的文献求助10
11秒前
11秒前
孤岛发布了新的文献求助10
11秒前
李健的小迷弟应助fsky采纳,获得10
11秒前
香蕉觅云应助星期八采纳,获得10
12秒前
瑶瑶的秋千完成签到,获得积分10
13秒前
13秒前
13秒前
彪壮的幻丝完成签到 ,获得积分10
13秒前
刘文莉完成签到,获得积分10
13秒前
14秒前
liao完成签到 ,获得积分10
14秒前
chenhua5460发布了新的文献求助10
14秒前
14秒前
儒雅致远发布了新的文献求助10
14秒前
15秒前
芝士发布了新的文献求助10
15秒前
wwk完成签到,获得积分10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582