亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Radiomic Machine Learning in Invasive Ductal Breast Cancer: Prediction of Ki-67 Expression Level Based on Radiomics of DCE-MRI

医学 切断 乳腺癌 置信区间 无线电技术 接收机工作特性 内科学 曲线下面积 曲线下面积 磁共振成像 预测值 癌症 肿瘤科 核医学 放射科 物理 量子力学 药代动力学
作者
Huan Yang,Wenxi Wang,Zhiyong Cheng,Tao Zheng,Cheng Cheng,Mengyu Cheng,Zhanqiu Wang
出处
期刊:Technology in Cancer Research & Treatment [SAGE]
卷期号:23
标识
DOI:10.1177/15330338241288751
摘要

Purpose Our study aimed to investigate the potential of radiomics with DCE-MRI for predicting Ki-67 expression in invasive ductal breast cancer. Method We conducted a retrospective study including 223 patients diagnosed with invasive ductal breast cancer. Radiomics features were extracted from DCE-MRI using 3D-Slicer software. Two Ki-67 expression cutoff values (20% and 29%) were examined. Patients were divided into training (70%) and test (30%) sets. The Elastic Net method selected relevant features, and five machine-learning models were established. Radiomics models were created from intratumoral, peritumoral, and combined regions. Performance was assessed using ROC curves, accuracy, sensitivity, and specificity. Result For a Ki-67 cutoff value of 20%, the combined model exhibited the highest performance, with area under the curve (AUC) values of 0.838 (95% confidence interval (CI): 0.774–0.897) for the training set and 0.863 (95% CI: 0.764–0.949) for the test set. The AUC values for the tumor model were 0.816 (95% CI: 0.745–0.880) and 0.830 (95% CI: 0.724–0.916), and for the peritumor model were 0.790 (95% CI: 0.711–0.857) and 0.808 (95% CI: 0.682–0.910). When the Ki-67 cutoff value was set at 29%, the combined model also demonstrated superior predictive ability in both training set (AUC: 0.796; 95% CI: 0.724–0.862) and the test set (AUC: 0.823; 95% CI: 0.723–0.911). The AUC values for the tumor model were 0.785 (95% CI: 0.708–0.861) and 0.784 (95% CI: 0.663–0.882), and for the peritumor model were 0.773 (95% CI: 0.690–0.844) and 0.729 (95% CI: 0.603–0.847). Conclusion Radiomics with DCE-MRI can predict Ki-67 expression in invasive ductal breast cancer. Integrating radiomics features from intratumoral and peritumoral regions yields a dependable prognostic model, facilitating pre-surgical detection and treatment decisions. This holds potential for commercial diagnostic tools.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
寂寞致幻发布了新的文献求助20
16秒前
DONG发布了新的文献求助10
21秒前
陶醉的烤鸡完成签到 ,获得积分10
25秒前
40秒前
知闲发布了新的文献求助10
47秒前
SUNny完成签到 ,获得积分10
1分钟前
寂寞致幻完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
KYTQQ完成签到 ,获得积分10
2分钟前
小青年儿完成签到 ,获得积分10
3分钟前
星辰大海应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
Lucas应助科研通管家采纳,获得10
5分钟前
automan发布了新的文献求助10
5分钟前
汉堡包应助river_121采纳,获得30
5分钟前
6分钟前
river_121发布了新的文献求助30
7分钟前
你好完成签到,获得积分10
7分钟前
Emma完成签到 ,获得积分10
7分钟前
7分钟前
Criminology34应助balko采纳,获得10
8分钟前
8分钟前
小小牛完成签到,获得积分10
8分钟前
聪慧的凝海完成签到 ,获得积分0
8分钟前
8分钟前
Criminology34举报waalsss求助涉嫌违规
8分钟前
9分钟前
倦鸟归林完成签到,获得积分10
9分钟前
倦鸟归林发布了新的文献求助10
9分钟前
Criminology34举报六蒙骑士求助涉嫌违规
9分钟前
Jasper应助科研通管家采纳,获得10
9分钟前
9分钟前
Criminology34举报狂野傲白求助涉嫌违规
9分钟前
1123048683wm发布了新的文献求助10
9分钟前
9分钟前
1123048683wm完成签到,获得积分10
10分钟前
10分钟前
10分钟前
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635029
求助须知:如何正确求助?哪些是违规求助? 4734553
关于积分的说明 14989637
捐赠科研通 4792779
什么是DOI,文献DOI怎么找? 2559891
邀请新用户注册赠送积分活动 1520158
关于科研通互助平台的介绍 1480221