亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Radiomic Machine Learning in Invasive Ductal Breast Cancer: Prediction of Ki-67 Expression Level Based on Radiomics of DCE-MRI

医学 切断 乳腺癌 置信区间 无线电技术 接收机工作特性 内科学 曲线下面积 曲线下面积 磁共振成像 预测值 癌症 肿瘤科 核医学 放射科 物理 药代动力学 量子力学
作者
Huan Yang,Wenxi Wang,Zhiyong Cheng,Tao Zheng,Cheng Cheng,Mengyu Cheng,Zhanqiu Wang
出处
期刊:Technology in Cancer Research & Treatment [SAGE]
卷期号:23
标识
DOI:10.1177/15330338241288751
摘要

Purpose Our study aimed to investigate the potential of radiomics with DCE-MRI for predicting Ki-67 expression in invasive ductal breast cancer. Method We conducted a retrospective study including 223 patients diagnosed with invasive ductal breast cancer. Radiomics features were extracted from DCE-MRI using 3D-Slicer software. Two Ki-67 expression cutoff values (20% and 29%) were examined. Patients were divided into training (70%) and test (30%) sets. The Elastic Net method selected relevant features, and five machine-learning models were established. Radiomics models were created from intratumoral, peritumoral, and combined regions. Performance was assessed using ROC curves, accuracy, sensitivity, and specificity. Result For a Ki-67 cutoff value of 20%, the combined model exhibited the highest performance, with area under the curve (AUC) values of 0.838 (95% confidence interval (CI): 0.774–0.897) for the training set and 0.863 (95% CI: 0.764–0.949) for the test set. The AUC values for the tumor model were 0.816 (95% CI: 0.745–0.880) and 0.830 (95% CI: 0.724–0.916), and for the peritumor model were 0.790 (95% CI: 0.711–0.857) and 0.808 (95% CI: 0.682–0.910). When the Ki-67 cutoff value was set at 29%, the combined model also demonstrated superior predictive ability in both training set (AUC: 0.796; 95% CI: 0.724–0.862) and the test set (AUC: 0.823; 95% CI: 0.723–0.911). The AUC values for the tumor model were 0.785 (95% CI: 0.708–0.861) and 0.784 (95% CI: 0.663–0.882), and for the peritumor model were 0.773 (95% CI: 0.690–0.844) and 0.729 (95% CI: 0.603–0.847). Conclusion Radiomics with DCE-MRI can predict Ki-67 expression in invasive ductal breast cancer. Integrating radiomics features from intratumoral and peritumoral regions yields a dependable prognostic model, facilitating pre-surgical detection and treatment decisions. This holds potential for commercial diagnostic tools.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gryff完成签到 ,获得积分10
3秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
ceeray23应助科研通管家采纳,获得10
18秒前
Akim应助科研通管家采纳,获得10
18秒前
小栗子完成签到,获得积分10
29秒前
ugk发布了新的文献求助10
39秒前
小二郎应助Cassiel采纳,获得30
42秒前
曾经沛白完成签到 ,获得积分10
47秒前
fantianhui完成签到 ,获得积分10
50秒前
51秒前
Cmqq发布了新的文献求助10
55秒前
57秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Qy0306发布了新的文献求助10
1分钟前
贱小贱完成签到,获得积分10
1分钟前
1分钟前
土豪的摩托完成签到 ,获得积分10
1分钟前
LIJinlin完成签到,获得积分10
1分钟前
1分钟前
Zyy完成签到,获得积分20
1分钟前
顾矜应助茶叶派采纳,获得10
1分钟前
Zyy发布了新的文献求助20
1分钟前
风中的迎丝完成签到,获得积分10
1分钟前
维棋完成签到 ,获得积分10
1分钟前
瘦瘦乌龟完成签到 ,获得积分10
2分钟前
余可馨完成签到,获得积分20
2分钟前
2分钟前
稳重涔雨完成签到 ,获得积分10
2分钟前
Cassiel发布了新的文献求助30
2分钟前
2分钟前
Unique完成签到 ,获得积分10
2分钟前
2分钟前
二郎显圣真菌完成签到 ,获得积分10
2分钟前
2分钟前
香蕉觅云应助Cmqq采纳,获得10
2分钟前
Qy0306完成签到,获得积分10
2分钟前
2分钟前
2分钟前
打打应助努力学习的小福采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599747
求助须知:如何正确求助?哪些是违规求助? 4685478
关于积分的说明 14838528
捐赠科研通 4670257
什么是DOI,文献DOI怎么找? 2538191
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470898