Radiomic Machine Learning in Invasive Ductal Breast Cancer: Prediction of Ki-67 Expression Level Based on Radiomics of DCE-MRI

医学 切断 乳腺癌 置信区间 无线电技术 接收机工作特性 内科学 曲线下面积 曲线下面积 磁共振成像 预测值 癌症 肿瘤科 核医学 放射科 物理 药代动力学 量子力学
作者
Huan Yang,Wenxi Wang,Zhiyong Cheng,Tao Zheng,Cheng Cheng,Mengyu Cheng,Zhanqiu Wang
出处
期刊:Technology in Cancer Research & Treatment [SAGE]
卷期号:23
标识
DOI:10.1177/15330338241288751
摘要

Purpose Our study aimed to investigate the potential of radiomics with DCE-MRI for predicting Ki-67 expression in invasive ductal breast cancer. Method We conducted a retrospective study including 223 patients diagnosed with invasive ductal breast cancer. Radiomics features were extracted from DCE-MRI using 3D-Slicer software. Two Ki-67 expression cutoff values (20% and 29%) were examined. Patients were divided into training (70%) and test (30%) sets. The Elastic Net method selected relevant features, and five machine-learning models were established. Radiomics models were created from intratumoral, peritumoral, and combined regions. Performance was assessed using ROC curves, accuracy, sensitivity, and specificity. Result For a Ki-67 cutoff value of 20%, the combined model exhibited the highest performance, with area under the curve (AUC) values of 0.838 (95% confidence interval (CI): 0.774–0.897) for the training set and 0.863 (95% CI: 0.764–0.949) for the test set. The AUC values for the tumor model were 0.816 (95% CI: 0.745–0.880) and 0.830 (95% CI: 0.724–0.916), and for the peritumor model were 0.790 (95% CI: 0.711–0.857) and 0.808 (95% CI: 0.682–0.910). When the Ki-67 cutoff value was set at 29%, the combined model also demonstrated superior predictive ability in both training set (AUC: 0.796; 95% CI: 0.724–0.862) and the test set (AUC: 0.823; 95% CI: 0.723–0.911). The AUC values for the tumor model were 0.785 (95% CI: 0.708–0.861) and 0.784 (95% CI: 0.663–0.882), and for the peritumor model were 0.773 (95% CI: 0.690–0.844) and 0.729 (95% CI: 0.603–0.847). Conclusion Radiomics with DCE-MRI can predict Ki-67 expression in invasive ductal breast cancer. Integrating radiomics features from intratumoral and peritumoral regions yields a dependable prognostic model, facilitating pre-surgical detection and treatment decisions. This holds potential for commercial diagnostic tools.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
初小花完成签到,获得积分10
5秒前
7秒前
研友_nPPaVn发布了新的文献求助30
10秒前
萧水白应助小锡采纳,获得10
13秒前
yesss完成签到,获得积分10
13秒前
14秒前
隐形曼青应助Zsc采纳,获得10
15秒前
福林古斯完成签到 ,获得积分10
15秒前
miyavi发布了新的文献求助30
18秒前
18秒前
19秒前
领导范儿应助且歌且行采纳,获得10
22秒前
依力帕发布了新的文献求助10
24秒前
luckytuantuan完成签到 ,获得积分20
25秒前
25秒前
七七雨后发布了新的文献求助30
25秒前
25秒前
不爱吃西葫芦完成签到 ,获得积分10
27秒前
酷波er应助!!采纳,获得10
27秒前
28秒前
英俊的铭应助茶茶采纳,获得10
28秒前
顺利的毛衣完成签到 ,获得积分10
28秒前
升升升呀应助lalala123采纳,获得10
30秒前
Jin发布了新的文献求助10
31秒前
yyyy发布了新的文献求助10
31秒前
realmar完成签到,获得积分10
31秒前
32秒前
小困发布了新的文献求助10
32秒前
手机应助kaka34采纳,获得10
34秒前
shyの煜完成签到 ,获得积分10
35秒前
Lucas应助称心的问安采纳,获得10
35秒前
jinxin完成签到,获得积分10
35秒前
天天快乐应助称心的问安采纳,获得10
36秒前
无花果应助瘦瘦采纳,获得10
37秒前
七七雨后完成签到,获得积分10
39秒前
40秒前
英勇水杯完成签到,获得积分10
43秒前
44秒前
46秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267675
求助须知:如何正确求助?哪些是违规求助? 2907110
关于积分的说明 8340681
捐赠科研通 2577828
什么是DOI,文献DOI怎么找? 1401227
科研通“疑难数据库(出版商)”最低求助积分说明 655005
邀请新用户注册赠送积分活动 634008