Continuous model calibration framework for smart-building digital twin: A generative model-based approach

校准 可扩展性 计算机科学 建筑模型 能源消耗 实时计算 控制工程 模拟 工业工程 工程类 统计 数学 数据库 电气工程
作者
Dagimawi D. Eneyew,Miriam A. M. Capretz,Girma Bitsuamlak
出处
期刊:Applied Energy [Elsevier BV]
卷期号:375: 124080-124080
标识
DOI:10.1016/j.apenergy.2024.124080
摘要

Smart building digital twins represent a significant paradigm shift to optimize building operations, thereby reducing their substantial energy consumption and emissions through digitalization. The objective is to virtually replicate existing buildings' static and dynamic aspects, leveraging data, information, and models spanning the entire life cycle. The virtual replica can then be employed for intelligent functions, including real-time monitoring, autonomous control, and proactive decision-making to optimize building operations. To enable proactive decisions, models within the digital twin must continually evolve with changes in the physical building, aligning their outputs with real-time measurements through calibration. This continuous updating requires real-time physical measurements of model inputs. However, challenges arise in the uncertain conditions of buildings marked by sensor absence, malfunctions, and inherent limitations in measuring certain variables. This study introduces a novel calibration framework for physics-based models, addressing the challenges of continuous model calibration in smart-building digital twins while considering the uncertain environment of physical buildings. Within this framework, a novel generative model-based architecture is proposed. This architecture enables a fast and scalable solution while quantifying uncertainty for reliable calibration. Furthermore, a continuous model calibration procedure is presented based on a pre-trained generative calibrator model. A comprehensive evaluation was conducted via a case study employing a building energy model and multiple experiments. The experimental results demonstrated that the proposed framework effectively addresses the challenges of continuous model calibration in smart-building digital twins. The calibrator model accurately quantified uncertainties in its predictions and solved a single calibration problem in an average time of 0.043 second. For facility-level electricity consumption, Coefficient of Variation Root Mean Squared Error (CVRMSE) values of 6.33%, 10.18%, and 10.97% were achieved under conditions of observations without noise or missing data, with noise, and with noise and missing data, respectively. Similarly, for facility-level gas consumption, the corresponding values were 18.75%, 20.53%, and 20.7%. The CVRMSE scores in both cases met the standard hourly thresholds for building energy model calibration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉默的靖儿完成签到 ,获得积分10
1秒前
wanci应助快乐小狗采纳,获得10
2秒前
卡卡光波完成签到,获得积分10
2秒前
虚心的老头完成签到,获得积分10
2秒前
Ava应助Orange采纳,获得10
2秒前
玄音完成签到,获得积分10
3秒前
zzw完成签到,获得积分10
4秒前
4秒前
6秒前
7秒前
7秒前
7秒前
7秒前
Akim应助bhappy21采纳,获得10
9秒前
妮妮完成签到,获得积分10
10秒前
12秒前
12秒前
Foura发布了新的文献求助10
13秒前
13秒前
kobegirl发布了新的文献求助10
13秒前
科研通AI5应助sxmt123456789采纳,获得10
13秒前
Bake发布了新的文献求助10
13秒前
13秒前
will发布了新的文献求助10
13秒前
快乐的忆安完成签到,获得积分10
14秒前
二二完成签到,获得积分10
14秒前
无为完成签到,获得积分10
14秒前
SGLY完成签到,获得积分10
14秒前
洋洋发布了新的文献求助30
14秒前
14秒前
15秒前
17秒前
17秒前
18秒前
ShyerC完成签到,获得积分10
19秒前
19秒前
仁爱笑白发布了新的文献求助10
20秒前
浮游应助义气的羽毛采纳,获得10
21秒前
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192038
求助须知:如何正确求助?哪些是违规求助? 4375147
关于积分的说明 13623731
捐赠科研通 4229284
什么是DOI,文献DOI怎么找? 2319783
邀请新用户注册赠送积分活动 1318375
关于科研通互助平台的介绍 1268503