清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Continuous model calibration framework for smart-building digital twin: A generative model-based approach

校准 可扩展性 计算机科学 建筑模型 能源消耗 实时计算 控制工程 模拟 工业工程 工程类 数学 数据库 统计 电气工程
作者
Dagimawi D. Eneyew,Miriam A. M. Capretz,Girma Bitsuamlak
出处
期刊:Applied Energy [Elsevier]
卷期号:375: 124080-124080
标识
DOI:10.1016/j.apenergy.2024.124080
摘要

Smart building digital twins represent a significant paradigm shift to optimize building operations, thereby reducing their substantial energy consumption and emissions through digitalization. The objective is to virtually replicate existing buildings' static and dynamic aspects, leveraging data, information, and models spanning the entire life cycle. The virtual replica can then be employed for intelligent functions, including real-time monitoring, autonomous control, and proactive decision-making to optimize building operations. To enable proactive decisions, models within the digital twin must continually evolve with changes in the physical building, aligning their outputs with real-time measurements through calibration. This continuous updating requires real-time physical measurements of model inputs. However, challenges arise in the uncertain conditions of buildings marked by sensor absence, malfunctions, and inherent limitations in measuring certain variables. This study introduces a novel calibration framework for physics-based models, addressing the challenges of continuous model calibration in smart-building digital twins while considering the uncertain environment of physical buildings. Within this framework, a novel generative model-based architecture is proposed. This architecture enables a fast and scalable solution while quantifying uncertainty for reliable calibration. Furthermore, a continuous model calibration procedure is presented based on a pre-trained generative calibrator model. A comprehensive evaluation was conducted via a case study employing a building energy model and multiple experiments. The experimental results demonstrated that the proposed framework effectively addresses the challenges of continuous model calibration in smart-building digital twins. The calibrator model accurately quantified uncertainties in its predictions and solved a single calibration problem in an average time of 0.043 second. For facility-level electricity consumption, Coefficient of Variation Root Mean Squared Error (CVRMSE) values of 6.33%, 10.18%, and 10.97% were achieved under conditions of observations without noise or missing data, with noise, and with noise and missing data, respectively. Similarly, for facility-level gas consumption, the corresponding values were 18.75%, 20.53%, and 20.7%. The CVRMSE scores in both cases met the standard hourly thresholds for building energy model calibration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shhoing应助科研通管家采纳,获得10
1分钟前
2分钟前
Becky完成签到 ,获得积分10
3分钟前
jfc完成签到 ,获得积分10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
CJY完成签到 ,获得积分10
3分钟前
Sunny完成签到,获得积分10
3分钟前
lululu完成签到 ,获得积分10
4分钟前
arsenal完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
shhoing应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
Ava应助科研通管家采纳,获得10
7分钟前
shhoing应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
DianaLee完成签到 ,获得积分10
8分钟前
背后访风完成签到 ,获得积分10
8分钟前
小熊同学完成签到 ,获得积分10
8分钟前
爱思考的小笨笨完成签到,获得积分10
9分钟前
muriel完成签到,获得积分0
9分钟前
如歌完成签到,获得积分10
9分钟前
Ava应助科研通管家采纳,获得10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
shhoing应助科研通管家采纳,获得10
9分钟前
王火火完成签到 ,获得积分10
9分钟前
毛毛完成签到,获得积分10
10分钟前
chenxiaofang完成签到 ,获得积分10
10分钟前
迷茫的一代完成签到,获得积分10
11分钟前
蝎子莱莱xth完成签到,获得积分10
11分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
11分钟前
Square完成签到,获得积分10
11分钟前
shhoing应助科研通管家采纳,获得10
11分钟前
小马甲应助科研通管家采纳,获得10
11分钟前
11分钟前
npknpk发布了新的文献求助10
11分钟前
gszy1975完成签到,获得积分10
12分钟前
Gryphon应助科研通管家采纳,获得10
13分钟前
轻松幼南完成签到 ,获得积分10
14分钟前
shhoing应助科研通管家采纳,获得10
15分钟前
npknpk完成签到,获得积分10
15分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561600
求助须知:如何正确求助?哪些是违规求助? 4646663
关于积分的说明 14678795
捐赠科研通 4588007
什么是DOI,文献DOI怎么找? 2517273
邀请新用户注册赠送积分活动 1490557
关于科研通互助平台的介绍 1461590