亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Continuous model calibration framework for smart-building digital twin: A generative model-based approach

校准 可扩展性 计算机科学 建筑模型 能源消耗 实时计算 控制工程 模拟 工业工程 工程类 数学 数据库 统计 电气工程
作者
Dagimawi D. Eneyew,Miriam A. M. Capretz,Girma Bitsuamlak
出处
期刊:Applied Energy [Elsevier]
卷期号:375: 124080-124080
标识
DOI:10.1016/j.apenergy.2024.124080
摘要

Smart building digital twins represent a significant paradigm shift to optimize building operations, thereby reducing their substantial energy consumption and emissions through digitalization. The objective is to virtually replicate existing buildings' static and dynamic aspects, leveraging data, information, and models spanning the entire life cycle. The virtual replica can then be employed for intelligent functions, including real-time monitoring, autonomous control, and proactive decision-making to optimize building operations. To enable proactive decisions, models within the digital twin must continually evolve with changes in the physical building, aligning their outputs with real-time measurements through calibration. This continuous updating requires real-time physical measurements of model inputs. However, challenges arise in the uncertain conditions of buildings marked by sensor absence, malfunctions, and inherent limitations in measuring certain variables. This study introduces a novel calibration framework for physics-based models, addressing the challenges of continuous model calibration in smart-building digital twins while considering the uncertain environment of physical buildings. Within this framework, a novel generative model-based architecture is proposed. This architecture enables a fast and scalable solution while quantifying uncertainty for reliable calibration. Furthermore, a continuous model calibration procedure is presented based on a pre-trained generative calibrator model. A comprehensive evaluation was conducted via a case study employing a building energy model and multiple experiments. The experimental results demonstrated that the proposed framework effectively addresses the challenges of continuous model calibration in smart-building digital twins. The calibrator model accurately quantified uncertainties in its predictions and solved a single calibration problem in an average time of 0.043 second. For facility-level electricity consumption, Coefficient of Variation Root Mean Squared Error (CVRMSE) values of 6.33%, 10.18%, and 10.97% were achieved under conditions of observations without noise or missing data, with noise, and with noise and missing data, respectively. Similarly, for facility-level gas consumption, the corresponding values were 18.75%, 20.53%, and 20.7%. The CVRMSE scores in both cases met the standard hourly thresholds for building energy model calibration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
是个哑巴发布了新的文献求助10
5秒前
Cherish完成签到,获得积分10
7秒前
高大的清涟完成签到 ,获得积分10
8秒前
12秒前
ding应助党弛采纳,获得10
19秒前
敬业乐群完成签到,获得积分10
21秒前
红海完成签到,获得积分10
25秒前
ramsey33完成签到 ,获得积分10
26秒前
迅速的薯片完成签到,获得积分10
26秒前
35秒前
tuyfytjt发布了新的文献求助10
39秒前
尹静涵完成签到 ,获得积分10
42秒前
Leeu应助tuyfytjt采纳,获得10
48秒前
50秒前
tuyfytjt完成签到,获得积分10
54秒前
鬼笔环肽完成签到 ,获得积分10
54秒前
55秒前
能干的荆完成签到 ,获得积分10
56秒前
xianianrui发布了新的文献求助10
1分钟前
1分钟前
1分钟前
CipherSage应助air采纳,获得10
1分钟前
1分钟前
刘生发布了新的文献求助10
1分钟前
弋鱼发布了新的文献求助10
1分钟前
1分钟前
xianianrui发布了新的文献求助10
1分钟前
沉静的迎荷完成签到,获得积分10
1分钟前
1分钟前
木有完成签到 ,获得积分10
1分钟前
1分钟前
Moyanmisheng发布了新的文献求助10
1分钟前
党弛发布了新的文献求助10
1分钟前
Moyanmisheng完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
潘果果完成签到,获得积分10
1分钟前
xuanjiawu完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657845
求助须知:如何正确求助?哪些是违规求助? 4812927
关于积分的说明 15080444
捐赠科研通 4816043
什么是DOI,文献DOI怎么找? 2577063
邀请新用户注册赠送积分活动 1532055
关于科研通互助平台的介绍 1490626