亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Continuous model calibration framework for smart-building digital twin: A generative model-based approach

校准 可扩展性 计算机科学 建筑模型 能源消耗 实时计算 控制工程 模拟 工业工程 工程类 数学 数据库 统计 电气工程
作者
Dagimawi D. Eneyew,Miriam A. M. Capretz,Girma Bitsuamlak
出处
期刊:Applied Energy [Elsevier]
卷期号:375: 124080-124080
标识
DOI:10.1016/j.apenergy.2024.124080
摘要

Smart building digital twins represent a significant paradigm shift to optimize building operations, thereby reducing their substantial energy consumption and emissions through digitalization. The objective is to virtually replicate existing buildings' static and dynamic aspects, leveraging data, information, and models spanning the entire life cycle. The virtual replica can then be employed for intelligent functions, including real-time monitoring, autonomous control, and proactive decision-making to optimize building operations. To enable proactive decisions, models within the digital twin must continually evolve with changes in the physical building, aligning their outputs with real-time measurements through calibration. This continuous updating requires real-time physical measurements of model inputs. However, challenges arise in the uncertain conditions of buildings marked by sensor absence, malfunctions, and inherent limitations in measuring certain variables. This study introduces a novel calibration framework for physics-based models, addressing the challenges of continuous model calibration in smart-building digital twins while considering the uncertain environment of physical buildings. Within this framework, a novel generative model-based architecture is proposed. This architecture enables a fast and scalable solution while quantifying uncertainty for reliable calibration. Furthermore, a continuous model calibration procedure is presented based on a pre-trained generative calibrator model. A comprehensive evaluation was conducted via a case study employing a building energy model and multiple experiments. The experimental results demonstrated that the proposed framework effectively addresses the challenges of continuous model calibration in smart-building digital twins. The calibrator model accurately quantified uncertainties in its predictions and solved a single calibration problem in an average time of 0.043 second. For facility-level electricity consumption, Coefficient of Variation Root Mean Squared Error (CVRMSE) values of 6.33%, 10.18%, and 10.97% were achieved under conditions of observations without noise or missing data, with noise, and with noise and missing data, respectively. Similarly, for facility-level gas consumption, the corresponding values were 18.75%, 20.53%, and 20.7%. The CVRMSE scores in both cases met the standard hourly thresholds for building energy model calibration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
科研通AI2S应助雪山飞龙采纳,获得10
12秒前
lanxinge完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
wanci应助科研通管家采纳,获得50
1分钟前
量子星尘发布了新的文献求助10
1分钟前
pjjpk01完成签到,获得积分10
1分钟前
1分钟前
CC发布了新的文献求助30
1分钟前
矜持完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
激动的55完成签到 ,获得积分10
2分钟前
3分钟前
4分钟前
4分钟前
搜集达人应助车哥爱学习采纳,获得10
4分钟前
4分钟前
所所应助CC采纳,获得30
4分钟前
4分钟前
4分钟前
Wenqi发布了新的文献求助10
4分钟前
4分钟前
Wenqi完成签到,获得积分10
4分钟前
balko发布了新的文献求助10
4分钟前
4分钟前
CC发布了新的文献求助30
4分钟前
4分钟前
CipherSage应助马文玉采纳,获得10
4分钟前
light发布了新的文献求助10
4分钟前
蕴蝶完成签到,获得积分10
4分钟前
balko完成签到,获得积分10
5分钟前
5分钟前
5分钟前
Eternity完成签到,获得积分10
5分钟前
kao2oak完成签到 ,获得积分10
5分钟前
温暖飞双完成签到,获得积分20
5分钟前
VDC应助温暖飞双采纳,获得30
5分钟前
魔幻友菱完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622275
求助须知:如何正确求助?哪些是违规求助? 4707334
关于积分的说明 14939084
捐赠科研通 4770272
什么是DOI,文献DOI怎么找? 2552277
邀请新用户注册赠送积分活动 1514348
关于科研通互助平台的介绍 1475085