Continuous model calibration framework for smart-building digital twin: A generative model-based approach

校准 可扩展性 计算机科学 建筑模型 能源消耗 实时计算 控制工程 模拟 工业工程 工程类 统计 数学 数据库 电气工程
作者
Dagimawi D. Eneyew,Miriam A. M. Capretz,Girma Bitsuamlak
出处
期刊:Applied Energy [Elsevier]
卷期号:375: 124080-124080
标识
DOI:10.1016/j.apenergy.2024.124080
摘要

Smart building digital twins represent a significant paradigm shift to optimize building operations, thereby reducing their substantial energy consumption and emissions through digitalization. The objective is to virtually replicate existing buildings' static and dynamic aspects, leveraging data, information, and models spanning the entire life cycle. The virtual replica can then be employed for intelligent functions, including real-time monitoring, autonomous control, and proactive decision-making to optimize building operations. To enable proactive decisions, models within the digital twin must continually evolve with changes in the physical building, aligning their outputs with real-time measurements through calibration. This continuous updating requires real-time physical measurements of model inputs. However, challenges arise in the uncertain conditions of buildings marked by sensor absence, malfunctions, and inherent limitations in measuring certain variables. This study introduces a novel calibration framework for physics-based models, addressing the challenges of continuous model calibration in smart-building digital twins while considering the uncertain environment of physical buildings. Within this framework, a novel generative model-based architecture is proposed. This architecture enables a fast and scalable solution while quantifying uncertainty for reliable calibration. Furthermore, a continuous model calibration procedure is presented based on a pre-trained generative calibrator model. A comprehensive evaluation was conducted via a case study employing a building energy model and multiple experiments. The experimental results demonstrated that the proposed framework effectively addresses the challenges of continuous model calibration in smart-building digital twins. The calibrator model accurately quantified uncertainties in its predictions and solved a single calibration problem in an average time of 0.043 second. For facility-level electricity consumption, Coefficient of Variation Root Mean Squared Error (CVRMSE) values of 6.33%, 10.18%, and 10.97% were achieved under conditions of observations without noise or missing data, with noise, and with noise and missing data, respectively. Similarly, for facility-level gas consumption, the corresponding values were 18.75%, 20.53%, and 20.7%. The CVRMSE scores in both cases met the standard hourly thresholds for building energy model calibration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
骨头完成签到,获得积分10
2秒前
杜志洪发布了新的文献求助10
2秒前
BBBBBlue先森应助拼搏向上采纳,获得30
3秒前
3秒前
3秒前
5秒前
6秒前
wanci应助杜志洪采纳,获得10
6秒前
6秒前
7秒前
研友_LJGoXn发布了新的文献求助10
7秒前
7秒前
7秒前
糖果风完成签到,获得积分10
8秒前
蛋黄酥酥完成签到,获得积分10
9秒前
内向初瑶发布了新的文献求助10
9秒前
9秒前
cong666完成签到,获得积分10
10秒前
难过翠容完成签到,获得积分10
10秒前
纯真的棉花糖完成签到,获得积分10
10秒前
cfhjfvg完成签到 ,获得积分20
10秒前
香香小海盗完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
小老虎发布了新的文献求助10
11秒前
含蓄乐松发布了新的文献求助10
11秒前
czz014完成签到,获得积分10
11秒前
Bosen发布了新的文献求助10
12秒前
陈惠卿88完成签到,获得积分10
12秒前
12秒前
李健应助Keily采纳,获得10
12秒前
搞怪易形发布了新的文献求助10
13秒前
领导范儿应助雍远侵采纳,获得10
14秒前
14秒前
15秒前
222发布了新的文献求助10
15秒前
16秒前
16秒前
一坤完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352788
求助须知:如何正确求助?哪些是违规求助? 4485565
关于积分的说明 13963378
捐赠科研通 4385560
什么是DOI,文献DOI怎么找? 2409546
邀请新用户注册赠送积分活动 1401853
关于科研通互助平台的介绍 1375516