已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Continuous model calibration framework for smart-building digital twin: A generative model-based approach

校准 可扩展性 计算机科学 建筑模型 能源消耗 实时计算 控制工程 模拟 工业工程 工程类 数学 数据库 统计 电气工程
作者
Dagimawi D. Eneyew,Miriam A. M. Capretz,Girma Bitsuamlak
出处
期刊:Applied Energy [Elsevier]
卷期号:375: 124080-124080
标识
DOI:10.1016/j.apenergy.2024.124080
摘要

Smart building digital twins represent a significant paradigm shift to optimize building operations, thereby reducing their substantial energy consumption and emissions through digitalization. The objective is to virtually replicate existing buildings' static and dynamic aspects, leveraging data, information, and models spanning the entire life cycle. The virtual replica can then be employed for intelligent functions, including real-time monitoring, autonomous control, and proactive decision-making to optimize building operations. To enable proactive decisions, models within the digital twin must continually evolve with changes in the physical building, aligning their outputs with real-time measurements through calibration. This continuous updating requires real-time physical measurements of model inputs. However, challenges arise in the uncertain conditions of buildings marked by sensor absence, malfunctions, and inherent limitations in measuring certain variables. This study introduces a novel calibration framework for physics-based models, addressing the challenges of continuous model calibration in smart-building digital twins while considering the uncertain environment of physical buildings. Within this framework, a novel generative model-based architecture is proposed. This architecture enables a fast and scalable solution while quantifying uncertainty for reliable calibration. Furthermore, a continuous model calibration procedure is presented based on a pre-trained generative calibrator model. A comprehensive evaluation was conducted via a case study employing a building energy model and multiple experiments. The experimental results demonstrated that the proposed framework effectively addresses the challenges of continuous model calibration in smart-building digital twins. The calibrator model accurately quantified uncertainties in its predictions and solved a single calibration problem in an average time of 0.043 second. For facility-level electricity consumption, Coefficient of Variation Root Mean Squared Error (CVRMSE) values of 6.33%, 10.18%, and 10.97% were achieved under conditions of observations without noise or missing data, with noise, and with noise and missing data, respectively. Similarly, for facility-level gas consumption, the corresponding values were 18.75%, 20.53%, and 20.7%. The CVRMSE scores in both cases met the standard hourly thresholds for building energy model calibration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助杨杨杨采纳,获得10
5秒前
小姚姚完成签到,获得积分10
5秒前
Neyou发布了新的文献求助10
5秒前
纪富完成签到 ,获得积分10
8秒前
10秒前
hehe完成签到,获得积分20
11秒前
大鼻子的新四岁完成签到,获得积分10
14秒前
yuan完成签到,获得积分10
14秒前
三千完成签到,获得积分10
16秒前
hehe发布了新的文献求助10
16秒前
酷波er应助kk采纳,获得10
22秒前
搬砖王发布了新的文献求助10
23秒前
24秒前
小葛完成签到,获得积分10
25秒前
de完成签到,获得积分10
26秒前
Heaven完成签到,获得积分10
28秒前
可爱的函函应助三千采纳,获得10
30秒前
32秒前
Criminology34应助悦耳的易梦采纳,获得10
35秒前
kk发布了新的文献求助10
37秒前
害羞的天真完成签到 ,获得积分10
46秒前
eing关注了科研通微信公众号
46秒前
qifei完成签到 ,获得积分10
47秒前
RE完成签到 ,获得积分10
48秒前
高高妙梦完成签到 ,获得积分10
52秒前
kk完成签到,获得积分10
52秒前
Ashan完成签到 ,获得积分10
58秒前
light完成签到,获得积分10
1分钟前
古今奇观完成签到 ,获得积分10
1分钟前
1分钟前
风趣的梦露完成签到 ,获得积分10
1分钟前
小小鱼完成签到 ,获得积分10
1分钟前
1分钟前
light发布了新的文献求助10
1分钟前
1分钟前
十三发布了新的文献求助10
1分钟前
小易发布了新的文献求助10
1分钟前
甜甜的以筠完成签到 ,获得积分10
1分钟前
1分钟前
灵梦柠檬酸完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616976
求助须知:如何正确求助?哪些是违规求助? 4701321
关于积分的说明 14913230
捐赠科研通 4747317
什么是DOI,文献DOI怎么找? 2549156
邀请新用户注册赠送积分活动 1512289
关于科研通互助平台的介绍 1474049