Insights into the effects of anilofos on direct-seeded rice production system through untargeted metabolomics

代谢组学 杂草 农学 生物 生物信息学
作者
Weitao Wang,Jiahuan Long,Huaixu Wang,Wenyuan Huang,Ying Zhang,Tingting Duan
出处
期刊:Environmental Pollution [Elsevier]
卷期号:360: 124668-124668 被引量:1
标识
DOI:10.1016/j.envpol.2024.124668
摘要

Weed infestation is the major biological threat in direct-seeded rice production and can cause significant yield losses. The effective use of herbicides is particularly important in direct-seeded rice production. Anilofos, a pre-emergence herbicide, has been shown to be effective against the weed barnyardgrass. However, its impacts on crop yield and the direct-seeded rice production ecosystem remain underexplored. In this study, we conducted field trials and used untargeted metabolomics to investigate systemic effects of two different treatments (40 g/acre and 60 g/acre) on rice shoot and root as well as the rhizosphere soil during the critical tillering stage. Here, a total of 400 metabolites were determined in the crop and soil, with differential metabolites primarily comprising lipids and lipid-like molecules as well as phenylpropanoids and polyketides. Spearman correlation network analysis and a Zi-Pi plot revealed 7 key differential metabolites with significant topological roles, including succinic acid semialdehyde and riboflavin. KEGG pathway analysis showed that anilofos downregulated the amino acid metabolism while mainly promoted carbohydrate metabolism and secondary metabolites biosynthesis of the crop, which made minimal disruption on soil metabolism. Notably, we found 40 g/acre anilofos application could significantly improve the rice yield, potentially linked to the improved activity of flavonoid biosynthesis and starch and sucrose metabolism. This research provides a comprehensive evaluation of anilofos effects in the direct-seeded rice production system, offering new insights into optimizing herbicide use to improve agricultural sustainability and productivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Nansen采纳,获得10
1秒前
ercha完成签到,获得积分10
1秒前
1秒前
鲤鱼泡泡完成签到,获得积分20
1秒前
PenguinYW给深情香寒的求助进行了留言
1秒前
樱花喵发布了新的文献求助30
2秒前
3秒前
3秒前
独特筝完成签到,获得积分10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
4秒前
sciDoge应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
小杨发布了新的文献求助10
4秒前
SYLH应助科研通管家采纳,获得10
4秒前
邓佳鑫Alan应助科研通管家采纳,获得10
4秒前
sciDoge应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
SYLH应助kanglan采纳,获得10
5秒前
5秒前
zhz完成签到,获得积分10
5秒前
Hugt发布了新的文献求助20
6秒前
6秒前
7秒前
8秒前
郭源潮完成签到,获得积分10
8秒前
8秒前
wjl发布了新的文献求助10
9秒前
俭朴千万完成签到,获得积分10
9秒前
10秒前
笙声慢发布了新的文献求助10
10秒前
别说话完成签到,获得积分10
11秒前
CC发布了新的文献求助30
11秒前
石化的海报完成签到,获得积分10
12秒前
俭朴千万发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514977
求助须知:如何正确求助?哪些是违规求助? 3097303
关于积分的说明 9235135
捐赠科研通 2792262
什么是DOI,文献DOI怎么找? 1532392
邀请新用户注册赠送积分活动 712025
科研通“疑难数据库(出版商)”最低求助积分说明 707090