Multi-objective molecular generation via clustered Pareto-based reinforcement learning

强化学习 帕累托原理 计算机科学 化学空间 排名(信息检索) 抓住 聚类分析 人工智能 集合(抽象数据类型) 数学优化 机器学习 药物发现 数学 化学 生物化学 程序设计语言
作者
Jing Wang,Fei Zhu
出处
期刊:Neural Networks [Elsevier]
卷期号:179: 106596-106596
标识
DOI:10.1016/j.neunet.2024.106596
摘要

De novo molecular design is the process of learning knowledge from existing data to propose new chemical structures that satisfy the desired properties. By using de novo design to generate compounds in a directed manner, better solutions can be obtained in large chemical libraries with less comparison cost. But drug design needs to take multiple factors into consideration. For example, in polypharmacology, molecules that activate or inhibit multiple target proteins produce multiple pharmacological activities and are less susceptible to drug resistance. However, most existing molecular generation methods either focus only on affinity for a single target or fail to effectively balance the relationship between multiple targets, resulting in insufficient validity and desirability of the generated molecules. To address the problems, an approach called clustered Pareto-based reinforcement learning (CPRL) is proposed. In CPRL, a pre-trained model is constructed to grasp existing molecular knowledge in a supervised learning manner. In addition, the clustered Pareto optimization algorithm is presented to find the best solution between different objectives. The algorithm first extracts an update set from the sampled molecules through the designed aggregation-based molecular clustering. Then, the final reward is computed by constructing the Pareto frontier ranking of the molecules from the updated set. To explore the vast chemical space, a reinforcement learning agent is designed in CPRL that can be updated under the guidance of the final reward to balance multiple properties. Furthermore, to increase the internal diversity of the molecules, a fixed-parameter exploration model is used for sampling in conjunction with the agent. The experimental results demonstrate that CPRL is capable of balancing multiple properties of the molecule and has higher desirability and validity, reaching 0.9551 and 0.9923, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专注月亮发布了新的文献求助10
2秒前
2秒前
难过若枫发布了新的文献求助10
3秒前
3秒前
3秒前
端庄梦桃发布了新的文献求助30
4秒前
簌簌发布了新的文献求助10
5秒前
5秒前
ding应助青筠采纳,获得10
6秒前
q额发布了新的文献求助10
6秒前
tttttt发布了新的文献求助10
7秒前
8秒前
吴怀硕发布了新的文献求助10
9秒前
9秒前
干净冰露发布了新的文献求助10
10秒前
召唤兽完成签到,获得积分20
11秒前
Liu发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
pgg发布了新的文献求助10
14秒前
Wind完成签到,获得积分0
15秒前
15秒前
小陈栗子完成签到,获得积分20
16秒前
北沐完成签到,获得积分10
16秒前
AN发布了新的文献求助10
17秒前
17秒前
知行者发布了新的文献求助10
18秒前
斯文败类应助我不得依较采纳,获得10
19秒前
小陈栗子发布了新的文献求助10
19秒前
Cookiee完成签到 ,获得积分10
19秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
Owen应助高高的东蒽采纳,获得10
20秒前
20秒前
DyG完成签到,获得积分10
20秒前
21秒前
21秒前
召唤兽发布了新的文献求助10
22秒前
ruirui完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425184
求助须知:如何正确求助?哪些是违规求助? 4539282
关于积分的说明 14166597
捐赠科研通 4456440
什么是DOI,文献DOI怎么找? 2444204
邀请新用户注册赠送积分活动 1435246
关于科研通互助平台的介绍 1412568