亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-objective molecular generation via clustered Pareto-based reinforcement learning

强化学习 帕累托原理 计算机科学 化学空间 排名(信息检索) 抓住 聚类分析 人工智能 集合(抽象数据类型) 数学优化 机器学习 药物发现 数学 化学 生物化学 程序设计语言
作者
Jing Wang,Fei Zhu
出处
期刊:Neural Networks [Elsevier]
卷期号:179: 106596-106596
标识
DOI:10.1016/j.neunet.2024.106596
摘要

De novo molecular design is the process of learning knowledge from existing data to propose new chemical structures that satisfy the desired properties. By using de novo design to generate compounds in a directed manner, better solutions can be obtained in large chemical libraries with less comparison cost. But drug design needs to take multiple factors into consideration. For example, in polypharmacology, molecules that activate or inhibit multiple target proteins produce multiple pharmacological activities and are less susceptible to drug resistance. However, most existing molecular generation methods either focus only on affinity for a single target or fail to effectively balance the relationship between multiple targets, resulting in insufficient validity and desirability of the generated molecules. To address the problems, an approach called clustered Pareto-based reinforcement learning (CPRL) is proposed. In CPRL, a pre-trained model is constructed to grasp existing molecular knowledge in a supervised learning manner. In addition, the clustered Pareto optimization algorithm is presented to find the best solution between different objectives. The algorithm first extracts an update set from the sampled molecules through the designed aggregation-based molecular clustering. Then, the final reward is computed by constructing the Pareto frontier ranking of the molecules from the updated set. To explore the vast chemical space, a reinforcement learning agent is designed in CPRL that can be updated under the guidance of the final reward to balance multiple properties. Furthermore, to increase the internal diversity of the molecules, a fixed-parameter exploration model is used for sampling in conjunction with the agent. The experimental results demonstrate that CPRL is capable of balancing multiple properties of the molecule and has higher desirability and validity, reaching 0.9551 and 0.9923, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wangwangwang完成签到,获得积分10
3秒前
英姑应助活力天蓝采纳,获得30
3秒前
年年年年发布了新的文献求助10
3秒前
无心的善愁完成签到 ,获得积分10
9秒前
冷酷愚志完成签到,获得积分10
10秒前
李健应助年年年年采纳,获得10
10秒前
许伟洋完成签到 ,获得积分10
10秒前
汉堡包应助怕孤单的石头采纳,获得10
12秒前
不安的未来完成签到,获得积分10
15秒前
遥知马完成签到,获得积分10
17秒前
17秒前
18秒前
科研通AI6.1应助Kz采纳,获得10
21秒前
冰汤葫芦发布了新的文献求助10
24秒前
桃子e发布了新的文献求助10
25秒前
酷炫的爆米花完成签到,获得积分10
29秒前
尤诺完成签到 ,获得积分10
30秒前
无名子完成签到 ,获得积分10
31秒前
鱼蛋完成签到,获得积分20
32秒前
33秒前
34秒前
鱼蛋发布了新的文献求助30
38秒前
爆米花应助小鱼采纳,获得10
38秒前
归宁发布了新的文献求助10
41秒前
斯文梦寒完成签到 ,获得积分10
42秒前
sophy发布了新的文献求助20
44秒前
45秒前
紧张的友灵完成签到,获得积分10
45秒前
韩祖完成签到 ,获得积分10
47秒前
47秒前
50秒前
52秒前
52秒前
陆康完成签到 ,获得积分10
53秒前
Ding完成签到 ,获得积分20
53秒前
55秒前
小鱼发布了新的文献求助10
55秒前
55秒前
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779750
求助须知:如何正确求助?哪些是违规求助? 5649480
关于积分的说明 15452248
捐赠科研通 4910842
什么是DOI,文献DOI怎么找? 2642978
邀请新用户注册赠送积分活动 1590629
关于科研通互助平台的介绍 1545067