Multi-objective molecular generation via clustered Pareto-based reinforcement learning

强化学习 帕累托原理 计算机科学 化学空间 排名(信息检索) 抓住 聚类分析 人工智能 集合(抽象数据类型) 数学优化 机器学习 药物发现 数学 化学 生物化学 程序设计语言
作者
Jing Wang,Fei Zhu
出处
期刊:Neural Networks [Elsevier]
卷期号:179: 106596-106596
标识
DOI:10.1016/j.neunet.2024.106596
摘要

De novo molecular design is the process of learning knowledge from existing data to propose new chemical structures that satisfy the desired properties. By using de novo design to generate compounds in a directed manner, better solutions can be obtained in large chemical libraries with less comparison cost. But drug design needs to take multiple factors into consideration. For example, in polypharmacology, molecules that activate or inhibit multiple target proteins produce multiple pharmacological activities and are less susceptible to drug resistance. However, most existing molecular generation methods either focus only on affinity for a single target or fail to effectively balance the relationship between multiple targets, resulting in insufficient validity and desirability of the generated molecules. To address the problems, an approach called clustered Pareto-based reinforcement learning (CPRL) is proposed. In CPRL, a pre-trained model is constructed to grasp existing molecular knowledge in a supervised learning manner. In addition, the clustered Pareto optimization algorithm is presented to find the best solution between different objectives. The algorithm first extracts an update set from the sampled molecules through the designed aggregation-based molecular clustering. Then, the final reward is computed by constructing the Pareto frontier ranking of the molecules from the updated set. To explore the vast chemical space, a reinforcement learning agent is designed in CPRL that can be updated under the guidance of the final reward to balance multiple properties. Furthermore, to increase the internal diversity of the molecules, a fixed-parameter exploration model is used for sampling in conjunction with the agent. The experimental results demonstrate that CPRL is capable of balancing multiple properties of the molecule and has higher desirability and validity, reaching 0.9551 and 0.9923, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
苏沐阳完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
上官若男应助伶俐的书白采纳,获得10
1秒前
2秒前
满意的路灯完成签到,获得积分10
2秒前
3秒前
yyy关注了科研通微信公众号
6秒前
搜集达人应助贪玩飞机采纳,获得10
6秒前
天天开心完成签到 ,获得积分10
6秒前
dengcl-jack发布了新的文献求助10
7秒前
邋遢大王完成签到,获得积分10
7秒前
万能图书馆应助SQ采纳,获得10
7秒前
隐形曼青应助不可思宇采纳,获得10
8秒前
Avie完成签到 ,获得积分10
11秒前
14秒前
15秒前
真知棒发布了新的文献求助10
16秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
z!完成签到 ,获得积分10
16秒前
OxO完成签到,获得积分10
17秒前
uniphoton发布了新的文献求助10
17秒前
18秒前
18秒前
19秒前
寒冷又晴发布了新的文献求助10
19秒前
贪玩飞机发布了新的文献求助10
19秒前
阿赖发布了新的文献求助10
21秒前
不可思宇发布了新的文献求助10
23秒前
23秒前
24秒前
lin发布了新的文献求助10
24秒前
25秒前
cc完成签到,获得积分10
26秒前
27秒前
chemlink完成签到,获得积分10
27秒前
28秒前
28秒前
Ava应助科研通管家采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594108
求助须知:如何正确求助?哪些是违规求助? 4679829
关于积分的说明 14811738
捐赠科研通 4645933
什么是DOI,文献DOI怎么找? 2534757
邀请新用户注册赠送积分活动 1502769
关于科研通互助平台的介绍 1469452