亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-objective molecular generation via clustered Pareto-based reinforcement learning

强化学习 帕累托原理 计算机科学 化学空间 排名(信息检索) 抓住 聚类分析 人工智能 集合(抽象数据类型) 数学优化 机器学习 药物发现 数学 化学 生物化学 程序设计语言
作者
Jing Wang,Fei Zhu
出处
期刊:Neural Networks [Elsevier]
卷期号:179: 106596-106596
标识
DOI:10.1016/j.neunet.2024.106596
摘要

De novo molecular design is the process of learning knowledge from existing data to propose new chemical structures that satisfy the desired properties. By using de novo design to generate compounds in a directed manner, better solutions can be obtained in large chemical libraries with less comparison cost. But drug design needs to take multiple factors into consideration. For example, in polypharmacology, molecules that activate or inhibit multiple target proteins produce multiple pharmacological activities and are less susceptible to drug resistance. However, most existing molecular generation methods either focus only on affinity for a single target or fail to effectively balance the relationship between multiple targets, resulting in insufficient validity and desirability of the generated molecules. To address the problems, an approach called clustered Pareto-based reinforcement learning (CPRL) is proposed. In CPRL, a pre-trained model is constructed to grasp existing molecular knowledge in a supervised learning manner. In addition, the clustered Pareto optimization algorithm is presented to find the best solution between different objectives. The algorithm first extracts an update set from the sampled molecules through the designed aggregation-based molecular clustering. Then, the final reward is computed by constructing the Pareto frontier ranking of the molecules from the updated set. To explore the vast chemical space, a reinforcement learning agent is designed in CPRL that can be updated under the guidance of the final reward to balance multiple properties. Furthermore, to increase the internal diversity of the molecules, a fixed-parameter exploration model is used for sampling in conjunction with the agent. The experimental results demonstrate that CPRL is capable of balancing multiple properties of the molecule and has higher desirability and validity, reaching 0.9551 and 0.9923, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梨炒栗子完成签到,获得积分10
1秒前
痞老板死磕蟹黄堡完成签到 ,获得积分10
5秒前
牧羊人发布了新的文献求助10
9秒前
null应助Pendulium采纳,获得10
15秒前
CNY完成签到 ,获得积分10
17秒前
19秒前
22秒前
量子星尘发布了新的文献求助10
31秒前
安静的从梦完成签到 ,获得积分10
33秒前
陈杰完成签到,获得积分10
39秒前
阿幽完成签到 ,获得积分10
40秒前
44秒前
zachary009完成签到 ,获得积分10
46秒前
科研通AI6应助字母采纳,获得10
48秒前
CapQing应助科研通管家采纳,获得10
49秒前
烟花应助科研通管家采纳,获得10
49秒前
彭于晏应助科研通管家采纳,获得10
49秒前
50秒前
旺仔先生完成签到,获得积分0
50秒前
聪明勇敢有力气完成签到 ,获得积分10
52秒前
59秒前
MasterE完成签到,获得积分10
59秒前
pia叽完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
MasterE发布了新的文献求助10
1分钟前
lyh完成签到,获得积分10
1分钟前
null应助Pendulium采纳,获得10
1分钟前
点点发布了新的文献求助10
1分钟前
小乙猪完成签到 ,获得积分0
1分钟前
乐乐应助牧羊人采纳,获得10
1分钟前
momo完成签到 ,获得积分10
1分钟前
1分钟前
123完成签到 ,获得积分10
1分钟前
小邓完成签到,获得积分10
1分钟前
梨凉完成签到,获得积分10
1分钟前
1分钟前
1分钟前
小于完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595648
求助须知:如何正确求助?哪些是违规求助? 4680904
关于积分的说明 14817947
捐赠科研通 4651117
什么是DOI,文献DOI怎么找? 2535539
邀请新用户注册赠送积分活动 1503494
关于科研通互助平台的介绍 1469743