Multi-objective molecular generation via clustered Pareto-based reinforcement learning

强化学习 帕累托原理 计算机科学 化学空间 排名(信息检索) 抓住 聚类分析 人工智能 集合(抽象数据类型) 数学优化 机器学习 药物发现 数学 化学 生物化学 程序设计语言
作者
Jing Wang,Fei Zhu
出处
期刊:Neural Networks [Elsevier]
卷期号:179: 106596-106596
标识
DOI:10.1016/j.neunet.2024.106596
摘要

De novo molecular design is the process of learning knowledge from existing data to propose new chemical structures that satisfy the desired properties. By using de novo design to generate compounds in a directed manner, better solutions can be obtained in large chemical libraries with less comparison cost. But drug design needs to take multiple factors into consideration. For example, in polypharmacology, molecules that activate or inhibit multiple target proteins produce multiple pharmacological activities and are less susceptible to drug resistance. However, most existing molecular generation methods either focus only on affinity for a single target or fail to effectively balance the relationship between multiple targets, resulting in insufficient validity and desirability of the generated molecules. To address the problems, an approach called clustered Pareto-based reinforcement learning (CPRL) is proposed. In CPRL, a pre-trained model is constructed to grasp existing molecular knowledge in a supervised learning manner. In addition, the clustered Pareto optimization algorithm is presented to find the best solution between different objectives. The algorithm first extracts an update set from the sampled molecules through the designed aggregation-based molecular clustering. Then, the final reward is computed by constructing the Pareto frontier ranking of the molecules from the updated set. To explore the vast chemical space, a reinforcement learning agent is designed in CPRL that can be updated under the guidance of the final reward to balance multiple properties. Furthermore, to increase the internal diversity of the molecules, a fixed-parameter exploration model is used for sampling in conjunction with the agent. The experimental results demonstrate that CPRL is capable of balancing multiple properties of the molecule and has higher desirability and validity, reaching 0.9551 and 0.9923, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啵啵龙发布了新的文献求助10
2秒前
沉默棉花糖完成签到,获得积分10
3秒前
鹏程应助拼搏君浩采纳,获得10
4秒前
5秒前
老马哥完成签到 ,获得积分0
5秒前
明月念斯人完成签到 ,获得积分10
7秒前
7秒前
淡然冬灵应助锅铲采纳,获得20
8秒前
Rabbit完成签到 ,获得积分10
10秒前
10秒前
现代书雪发布了新的文献求助10
11秒前
宁霸完成签到,获得积分0
12秒前
deniroming完成签到,获得积分0
16秒前
Jasper应助ZR666888采纳,获得10
17秒前
一行完成签到,获得积分10
17秒前
壮观小懒虫完成签到 ,获得积分10
18秒前
勤恳洙应助现代书雪采纳,获得30
22秒前
28秒前
嘿嘿应助科研通管家采纳,获得10
28秒前
在水一方应助科研通管家采纳,获得10
28秒前
桐桐应助刘慧鑫采纳,获得10
28秒前
NexusExplorer应助科研通管家采纳,获得10
28秒前
28秒前
充电宝应助科研通管家采纳,获得10
28秒前
斯文败类应助科研通管家采纳,获得10
28秒前
bkagyin应助科研通管家采纳,获得10
28秒前
29秒前
现代书雪完成签到,获得积分20
31秒前
32秒前
跳跃小伙完成签到 ,获得积分10
33秒前
33秒前
123345发布了新的文献求助10
34秒前
35秒前
zyyao发布了新的文献求助20
35秒前
流光发布了新的文献求助10
37秒前
Owen应助2022H采纳,获得20
37秒前
zxer发布了新的文献求助10
38秒前
乐观荣轩完成签到,获得积分10
40秒前
刘慧鑫发布了新的文献求助10
41秒前
香蕉觅云应助讨厌乐跑采纳,获得10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Using a Non-Equivalent Control Group Design in Educational Research 200
Public Health, Personal Health and Pills: Drug Entanglements and Pharmaceuticalised Governance 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5868245
求助须知:如何正确求助?哪些是违规求助? 6439836
关于积分的说明 15658050
捐赠科研通 4983670
什么是DOI,文献DOI怎么找? 2687581
邀请新用户注册赠送积分活动 1630242
关于科研通互助平台的介绍 1588346