High-throughput prediction of oral acute toxicity in Rat and Mouse of over 100,000 polychlorinated persistent organic pollutants (PC-POPs) by interpretable data fusion-driven machine learning global models

污染物 毒性 环境科学 环境化学 急性毒性 吞吐量 水污染物 人工智能 机器学习 计算机科学 化学 有机化学 电信 无线
作者
Shuo Chen,Tengjiao Fan,Ting Ren,Na Zhang,Lijiao Zhao,Rugang Zhong,Guohui Sun
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:480: 136295-136295 被引量:6
标识
DOI:10.1016/j.jhazmat.2024.136295
摘要

This study utilized available oral acute toxicity data in Rat and Mouse for polychlorinated persistent organic pollutants (PC-POPs) to construct data fusion-driven machine learning (ML) global models. Based on atom-centered fragments (ACFs), the collected high-throughput data overcame the applicability limitations, enabling accurate toxicity prediction for a wide range of PC-POPs series compounds using only single models. The data variances in the Rat training and test sets were 1.52 and 1.34, respectively, while for the Mouse, the values were 1.48 and 1.36, respectively. Genetic algorithm (GA) was used to build multiple linear regression (MLR) models and pre-screen descriptors, addressing the "black-box" problem prevalent in ML and enhancing model interpretability. The best ML models for Rat and Mouse achieved approximately 90 % prediction reliability for over 100,000 true untested compounds. Ultimately, a warning list of highly toxic compounds for eight categories of polychlorinated atom-centered fragments (PCACFs) was generated based on the prediction results. The analysis of descriptors revealed that dioxin analogs generally exhibited higher toxicity, because the heteroatoms and ring systems increased structural complexity and formed larger conjugated systems, contributing to greater oral acute toxicity. The present study provides valuable insights for guiding the subsequent in vivo tests, environmental risk assessment and the improvement of global governance system of pollutants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
永力发布了新的文献求助10
刚刚
刚刚
FashionBoy应助xw采纳,获得10
刚刚
7h发布了新的文献求助10
1秒前
小蘑菇应助烨霖采纳,获得10
1秒前
废雨完成签到,获得积分10
2秒前
2秒前
土豆豆发布了新的文献求助10
2秒前
大个应助Gina采纳,获得10
2秒前
2秒前
3秒前
4秒前
4秒前
Green发布了新的文献求助10
4秒前
所所应助无情访琴采纳,获得30
4秒前
4秒前
5秒前
5秒前
研友_Zr53an发布了新的文献求助10
5秒前
香蕉觅云应助xiwke采纳,获得10
6秒前
smile发布了新的文献求助10
6秒前
6秒前
有川洋一发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
xxww完成签到,获得积分20
8秒前
k_1发布了新的文献求助10
9秒前
9秒前
kekerenren发布了新的文献求助10
9秒前
9秒前
雨眠发布了新的文献求助10
10秒前
xyx完成签到,获得积分10
10秒前
10秒前
lzxucn发布了新的文献求助10
11秒前
11秒前
鲤鱼凛发布了新的文献求助10
11秒前
11秒前
panxue发布了新的文献求助10
11秒前
浮游应助mwn采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578178
求助须知:如何正确求助?哪些是违规求助? 4663118
关于积分的说明 14744673
捐赠科研通 4603816
什么是DOI,文献DOI怎么找? 2526698
邀请新用户注册赠送积分活动 1496310
关于科研通互助平台的介绍 1465712