High-throughput prediction of oral acute toxicity in Rat and Mouse of over 100,000 polychlorinated persistent organic pollutants (PC-POPs) by interpretable data fusion-driven machine learning global models

污染物 毒性 环境科学 环境化学 急性毒性 吞吐量 水污染物 人工智能 机器学习 计算机科学 化学 有机化学 电信 无线
作者
Shuo Chen,Tengjiao Fan,Ting Ren,Na Zhang,Lijiao Zhao,Rugang Zhong,Guohui Sun
出处
期刊:Journal of Hazardous Materials [Elsevier BV]
卷期号:480: 136295-136295
标识
DOI:10.1016/j.jhazmat.2024.136295
摘要

This study utilized available oral acute toxicity data in Rat and Mouse for polychlorinated persistent organic pollutants (PC-POPs) to construct data fusion-driven machine learning (ML) global models. Based on atom-centered fragments (ACFs), the collected high-throughput data overcame the applicability limitations, enabling accurate toxicity prediction for a wide range of PC-POPs series compounds using only single models. The data variances in the Rat training and test sets were 1.52 and 1.34, respectively, while for the Mouse, the values were 1.48 and 1.36, respectively. Genetic algorithm (GA) was used to build multiple linear regression (MLR) models and pre-screen descriptors, addressing the "black-box" problem prevalent in ML and enhancing model interpretability. The best ML models for Rat and Mouse achieved approximately 90 % prediction reliability for over 100,000 true untested compounds. Ultimately, a warning list of highly toxic compounds for eight categories of polychlorinated atom-centered fragments (PCACFs) was generated based on the prediction results. The analysis of descriptors revealed that dioxin analogs generally exhibited higher toxicity, because the heteroatoms and ring systems increased structural complexity and formed larger conjugated systems, contributing to greater oral acute toxicity. The present study provides valuable insights for guiding the subsequent in vivo tests, environmental risk assessment and the improvement of global governance system of pollutants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗯嗯完成签到 ,获得积分10
1秒前
Aria完成签到,获得积分20
1秒前
安详凡发布了新的文献求助10
4秒前
Jenny驳回了所所应助
4秒前
7秒前
8秒前
9秒前
整齐小猫咪完成签到,获得积分10
9秒前
Dritsw应助开心绫采纳,获得10
9秒前
武大聪明丶完成签到,获得积分10
9秒前
DQY完成签到,获得积分10
11秒前
Peppermint发布了新的文献求助10
14秒前
mublake发布了新的文献求助10
14秒前
小鱼儿发布了新的文献求助10
14秒前
xdd发布了新的文献求助100
14秒前
77完成签到,获得积分10
15秒前
Jasper应助Aria采纳,获得10
16秒前
爱丽丝很学术完成签到,获得积分10
17秒前
淡然的芷荷完成签到 ,获得积分10
18秒前
mublake完成签到,获得积分10
18秒前
20秒前
激动的爆米花完成签到,获得积分20
20秒前
Peppermint完成签到,获得积分10
20秒前
21秒前
21秒前
李健的粉丝团团长应助xrhk采纳,获得30
23秒前
脑洞疼应助lyn采纳,获得10
24秒前
武大聪明丶关注了科研通微信公众号
24秒前
松子儿hhh完成签到,获得积分10
24秒前
25秒前
QF发布了新的文献求助10
26秒前
友好旭尧发布了新的文献求助10
26秒前
26秒前
27秒前
优美鱼发布了新的文献求助10
27秒前
29秒前
小虎应助Afaq采纳,获得10
30秒前
哇塞的完成签到,获得积分10
30秒前
32秒前
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966324
求助须知:如何正确求助?哪些是违规求助? 3511753
关于积分的说明 11159467
捐赠科研通 3246341
什么是DOI,文献DOI怎么找? 1793389
邀请新用户注册赠送积分活动 874417
科研通“疑难数据库(出版商)”最低求助积分说明 804357