High-throughput prediction of oral acute toxicity in Rat and Mouse of over 100,000 polychlorinated persistent organic pollutants (PC-POPs) by interpretable data fusion-driven machine learning global models

污染物 毒性 环境科学 环境化学 急性毒性 吞吐量 水污染物 人工智能 机器学习 计算机科学 化学 有机化学 电信 无线
作者
Shuo Chen,Tengjiao Fan,Ting Ren,Na Zhang,Lijiao Zhao,Rugang Zhong,Guohui Sun
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:480: 136295-136295
标识
DOI:10.1016/j.jhazmat.2024.136295
摘要

This study utilized available oral acute toxicity data in Rat and Mouse for polychlorinated persistent organic pollutants (PC-POPs) to construct data fusion-driven machine learning (ML) global models. Based on atom-centered fragments (ACFs), the collected high-throughput data overcame the applicability limitations, enabling accurate toxicity prediction for a wide range of PC-POPs series compounds using only single models. The data variances in the Rat training and test sets were 1.52 and 1.34, respectively, while for the Mouse, the values were 1.48 and 1.36, respectively. Genetic algorithm (GA) was used to build multiple linear regression (MLR) models and pre-screen descriptors, addressing the "black-box" problem prevalent in ML and enhancing model interpretability. The best ML models for Rat and Mouse achieved approximately 90 % prediction reliability for over 100,000 true untested compounds. Ultimately, a warning list of highly toxic compounds for eight categories of polychlorinated atom-centered fragments (PCACFs) was generated based on the prediction results. The analysis of descriptors revealed that dioxin analogs generally exhibited higher toxicity, because the heteroatoms and ring systems increased structural complexity and formed larger conjugated systems, contributing to greater oral acute toxicity. The present study provides valuable insights for guiding the subsequent in vivo tests, environmental risk assessment and the improvement of global governance system of pollutants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动次打次应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得30
2秒前
科目三应助科研通管家采纳,获得30
2秒前
cocolu应助科研通管家采纳,获得10
2秒前
wen应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
丰知然应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
瑾玉完成签到,获得积分10
4秒前
yaya发布了新的文献求助10
4秒前
5秒前
领导范儿应助吉吉国王采纳,获得10
7秒前
9秒前
清秀的吐司完成签到 ,获得积分10
10秒前
星辰大海应助迅速灵竹采纳,获得10
11秒前
ZME发布了新的文献求助10
11秒前
yao关注了科研通微信公众号
11秒前
llzzyy发布了新的文献求助10
13秒前
14秒前
NANANA完成签到,获得积分10
15秒前
安在哉完成签到,获得积分10
16秒前
yaya完成签到,获得积分10
18秒前
20秒前
21秒前
HMZ完成签到,获得积分10
25秒前
迅速灵竹发布了新的文献求助10
26秒前
27秒前
汉堡包应助小萌采纳,获得10
29秒前
张怡博完成签到 ,获得积分10
29秒前
30秒前
30秒前
在水一方应助334niubi666采纳,获得10
30秒前
31秒前
yao发布了新的文献求助10
33秒前
77完成签到 ,获得积分10
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308460
求助须知:如何正确求助?哪些是违规求助? 2941800
关于积分的说明 8505840
捐赠科研通 2616702
什么是DOI,文献DOI怎么找? 1429755
科研通“疑难数据库(出版商)”最低求助积分说明 663888
邀请新用户注册赠送积分活动 648967