全基因组关联研究
抗磷脂综合征
遗传学
生物
遗传关联
基因组
医学
计算生物学
基因
单核苷酸多态性
怀孕
基因型
作者
Desiré Casares‐Marfil,Manuel Martínez‐Bueno,María Orietta Borghi,Guillermo J. Pons‐Estel,Guillermo Reales,Yu Zuo,Gerard Espinosa,Timothy R. D. J. Radstake,Lucas L. van den Hoogen,Chris Wallace,Joel M. Guthridge,Judith A. James,Ricard Cervera,Pier Luigi Meroni,Javier Martı́n,Jason S. Knight,Marta E. Alarcón‐Riquelme,Amr H. Sawalha
摘要
Objective Primary antiphospholipid syndrome (PAPS) is a rare autoimmune disease characterized by the presence of antiphospholipid antibodies and the occurrence of thrombotic events and pregnancy complications. Our study aimed to identify novel genetic susceptibility loci associated with PAPS. Methods We performed a genome‐wide association study comprising 5,485 individuals (482 affected individuals) of European ancestry. Significant and suggestive independent variants from a meta‐analysis of approximately 7 million variants were evaluated for functional and biological process enrichment. The genetic risk variability for PAPS in different populations was also assessed. Hierarchical clustering, Mahalanobis distance, and Dirichlet Process Mixtures with uncertainty clustering methods were used to assess genetic similarities between PAPS and other immune‐mediated diseases. Results We revealed genetic associations with PAPS in a regulatory locus within the HLA class II region near HLA‐DRA and in STAT1‐STAT4 with a genome‐wide level of significance; 34 additional suggestive genetic susceptibility loci for PAPS were also identified. The disease risk allele near HLA‐DRA is associated with overexpression of HLA‐DRB6 , HLA‐DRB9 , HLA‐DQA2 , and HLA‐DQB2 in immune cells, vascular tissue, and nervous tissue. This association is independent of the association between PAPS and HLA‐DRB1*1302 . Functional analyses highlighted immune‐related pathways in PAPS‐associated loci. The comparison with other immune‐mediated diseases revealed a close genetic relatedness to neuromyelitis optica, systemic sclerosis, and Sjögren syndrome, suggesting co‐localized causal variations close to STAT1‐STAT4 , TNPO3 , and BLK . Conclusion This study represents a comprehensive large‐scale genetic analysis for PAPS and provides new insights into the genetic basis and pathophysiology of this rare disease. image
科研通智能强力驱动
Strongly Powered by AbleSci AI