OVAR-BPnet: A General Pulse Wave Deep Learning Approach for Cuffless Blood Pressure Measurement

脉搏波分析 计算机科学 血压 脉冲波 脉搏(音乐) 人工智能 医学 脉冲波速 电信 内科学 探测器 抖动
作者
Yuhui Cen,Jingchun Luo,Hongbo Wang,Li Chen,Xing Zhu,Shijie Guo,Jingjing Luo
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (10): 5829-5841 被引量:1
标识
DOI:10.1109/jbhi.2024.3423461
摘要

Pulse wave analysis, a non-invasive and cuff-less approach, holds promise for blood pressure (BP) measurement in precision medicine. In recent years, pulse wave learning for BP estimation has undergone extensive scrutiny. However, prevailing methods still encounter challenges in grasping comprehensive features from pulse waves and generalizing these insights for precise BP estimation. In this study, we propose a general pulse wave deep learning (PWDL) approach for BP estimation, introduc-ing the OVAR-BPnet model to powerfully capture intricate pulse wave features and showcasing its effectiveness on multiple types of pulse waves. The approach involves constructing population pulse waves and employing a model comprising an omni-scale convolution subnet, a Vision Transformer subnet, and a multilayer perceptron subnet. This design enables the learning of both single-period and multi-period waveform features from multiple subjects. Additionally, the approach employs a data augmentation strategy to enhance the morphological features of pulse waves and devise a label sequence regularization strategy to strengthen the intrinsic relationship of the subnets' output. Notably, this is the first study to validate the performance of the deep learning approach of BP estimation on three types of pulse waves: photoplethysmography, forehead imaging photoplethysmography, and radial artery pulse pressure waveform. Experiments show that the OVAR-BPnet model has achieved advanced levels in both evaluation indicators and international evaluation criteria, demonstrating its excellent competitiveness and generalizability. The PWDL approach has the potential for widespread application in convenient and continuous BP monitoring systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Allergy完成签到,获得积分20
2秒前
新疆彭于晏完成签到,获得积分20
3秒前
3秒前
开放飞阳完成签到 ,获得积分10
3秒前
小鱼儿发布了新的文献求助10
5秒前
5秒前
plain发布了新的文献求助10
6秒前
6秒前
科研通AI5应助ZXC采纳,获得10
7秒前
7秒前
wwl完成签到,获得积分10
8秒前
FashionBoy应助十六采纳,获得10
8秒前
念姬发布了新的文献求助10
10秒前
小二郎应助新疆彭于晏采纳,获得10
10秒前
挽风风风风完成签到,获得积分10
11秒前
11秒前
药小隐发布了新的文献求助10
12秒前
Djnsbj发布了新的文献求助10
13秒前
香雪若梅完成签到 ,获得积分10
14秒前
14秒前
14秒前
14秒前
tym完成签到,获得积分10
15秒前
17秒前
lll发布了新的文献求助10
17秒前
Levin发布了新的文献求助10
17秒前
ei123应助能干宛秋采纳,获得30
18秒前
18秒前
漂亮的人人人完成签到 ,获得积分10
18秒前
19秒前
ldx发布了新的文献求助10
19秒前
酷波er应助SSS水鱼采纳,获得30
19秒前
领导范儿应助YUN采纳,获得30
20秒前
慕青应助笑傲江湖采纳,获得10
21秒前
22秒前
洛言lj发布了新的文献求助10
22秒前
擦擦车完成签到,获得积分20
23秒前
23秒前
xiaoma完成签到,获得积分10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966468
求助须知:如何正确求助?哪些是违规求助? 3511990
关于积分的说明 11161200
捐赠科研通 3246780
什么是DOI,文献DOI怎么找? 1793495
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804420