OVAR-BPnet: A General Pulse Wave Deep Learning Approach for Cuffless Blood Pressure Measurement

脉搏波分析 计算机科学 血压 脉冲波 脉搏(音乐) 人工智能 医学 脉冲波速 电信 内科学 探测器 抖动
作者
Yuhui Cen,Jingchun Luo,Hongbo Wang,Li Chen,Xing Zhu,Shijie Guo,Jingjing Luo
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (10): 5829-5841 被引量:1
标识
DOI:10.1109/jbhi.2024.3423461
摘要

Pulse wave analysis, a non-invasive and cuff-less approach, holds promise for blood pressure (BP) measurement in precision medicine. In recent years, pulse wave learning for BP estimation has undergone extensive scrutiny. However, prevailing methods still encounter challenges in grasping comprehensive features from pulse waves and generalizing these insights for precise BP estimation. In this study, we propose a general pulse wave deep learning (PWDL) approach for BP estimation, introduc-ing the OVAR-BPnet model to powerfully capture intricate pulse wave features and showcasing its effectiveness on multiple types of pulse waves. The approach involves constructing population pulse waves and employing a model comprising an omni-scale convolution subnet, a Vision Transformer subnet, and a multilayer perceptron subnet. This design enables the learning of both single-period and multi-period waveform features from multiple subjects. Additionally, the approach employs a data augmentation strategy to enhance the morphological features of pulse waves and devise a label sequence regularization strategy to strengthen the intrinsic relationship of the subnets' output. Notably, this is the first study to validate the performance of the deep learning approach of BP estimation on three types of pulse waves: photoplethysmography, forehead imaging photoplethysmography, and radial artery pulse pressure waveform. Experiments show that the OVAR-BPnet model has achieved advanced levels in both evaluation indicators and international evaluation criteria, demonstrating its excellent competitiveness and generalizability. The PWDL approach has the potential for widespread application in convenient and continuous BP monitoring systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢喜的忘幽完成签到 ,获得积分10
刚刚
过眼云烟完成签到,获得积分10
2秒前
Owen应助Xx采纳,获得10
2秒前
欢喜的忘幽关注了科研通微信公众号
3秒前
漠池完成签到,获得积分10
5秒前
大模型应助淡然的蓝天采纳,获得10
7秒前
Peng完成签到 ,获得积分10
7秒前
9秒前
9秒前
浮游应助wzz采纳,获得10
10秒前
梅哈发布了新的文献求助10
14秒前
15秒前
张狗蛋发布了新的文献求助10
16秒前
Owen应助张一采纳,获得10
17秒前
18秒前
19秒前
21秒前
22秒前
23秒前
隐形的天问完成签到,获得积分20
24秒前
金阿林在科研应助zzr采纳,获得10
24秒前
研友_zndKVL发布了新的文献求助10
24秒前
胡萝卜发布了新的文献求助10
25秒前
26秒前
轻松的采柳完成签到 ,获得积分10
28秒前
swallow发布了新的文献求助10
31秒前
大模型应助研友_zndKVL采纳,获得10
31秒前
小学猹完成签到,获得积分10
31秒前
望舒完成签到,获得积分20
32秒前
小蘑菇应助胡萝卜采纳,获得10
32秒前
科研人完成签到,获得积分10
32秒前
34秒前
bkagyin应助zyt采纳,获得10
37秒前
一只秤砣发布了新的文献求助10
42秒前
43秒前
言言完成签到,获得积分10
43秒前
44秒前
111完成签到,获得积分10
44秒前
豆本豆完成签到,获得积分10
44秒前
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373754
求助须知:如何正确求助?哪些是违规求助? 4499770
关于积分的说明 14007232
捐赠科研通 4406707
什么是DOI,文献DOI怎么找? 2420672
邀请新用户注册赠送积分活动 1413421
关于科研通互助平台的介绍 1389992