OVAR-BPnet: A General Pulse Wave Deep Learning Approach for Cuffless Blood Pressure Measurement

脉搏波分析 计算机科学 血压 脉冲波 脉搏(音乐) 人工智能 医学 脉冲波速 电信 内科学 探测器 抖动
作者
Yuhui Cen,Jingchun Luo,Hongbo Wang,Li Chen,Xing Zhu,Shijie Guo,Jingjing Luo
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (10): 5829-5841
标识
DOI:10.1109/jbhi.2024.3423461
摘要

Pulse wave analysis, a non-invasive and cuff-less approach, holds promise for blood pressure (BP) measurement in precision medicine. In recent years, pulse wave learning for BP estimation has undergone extensive scrutiny. However, prevailing methods still encounter challenges in grasping comprehensive features from pulse waves and generalizing these insights for precise BP estimation. In this study, we propose a general pulse wave deep learning (PWDL) approach for BP estimation, introduc-ing the OVAR-BPnet model to powerfully capture intricate pulse wave features and showcasing its effectiveness on multiple types of pulse waves. The approach involves constructing population pulse waves and employing a model comprising an omni-scale convolution subnet, a Vision Transformer subnet, and a multilayer perceptron subnet. This design enables the learning of both single-period and multi-period waveform features from multiple subjects. Additionally, the approach employs a data augmentation strategy to enhance the morphological features of pulse waves and devise a label sequence regularization strategy to strengthen the intrinsic relationship of the subnets' output. Notably, this is the first study to validate the performance of the deep learning approach of BP estimation on three types of pulse waves: photoplethysmography, forehead imaging photoplethysmography, and radial artery pulse pressure waveform. Experiments show that the OVAR-BPnet model has achieved advanced levels in both evaluation indicators and international evaluation criteria, demonstrating its excellent competitiveness and generalizability. The PWDL approach has the potential for widespread application in convenient and continuous BP monitoring systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
甜的瓜完成签到,获得积分10
4秒前
zhao完成签到 ,获得积分10
5秒前
Lucas应助xun采纳,获得10
5秒前
Tracy完成签到 ,获得积分10
5秒前
6秒前
8秒前
栗子发布了新的文献求助10
8秒前
9秒前
summer完成签到 ,获得积分10
9秒前
10秒前
Zoe完成签到,获得积分10
10秒前
12秒前
zyx发布了新的文献求助10
13秒前
达da发布了新的文献求助10
13秒前
在水一方应助现实的南烟采纳,获得10
13秒前
guajiguaji完成签到,获得积分10
14秒前
NexusExplorer应助雨季采纳,获得10
14秒前
黄淮二傻发布了新的文献求助10
15秒前
melon发布了新的文献求助10
16秒前
liu星雨完成签到,获得积分20
17秒前
不配.应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
思源应助科研通管家采纳,获得10
18秒前
18秒前
赘婿应助科研通管家采纳,获得10
18秒前
乐乐应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
wanci应助科研通管家采纳,获得10
18秒前
keke完成签到,获得积分10
18秒前
小二郎应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
不配.应助科研通管家采纳,获得10
19秒前
Hello应助科研通管家采纳,获得10
19秒前
小马甲应助科研通管家采纳,获得10
19秒前
19秒前
21秒前
CY发布了新的文献求助10
22秒前
秀丽的慕灵完成签到,获得积分10
22秒前
甄茗完成签到 ,获得积分10
23秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141967
求助须知:如何正确求助?哪些是违规求助? 2792954
关于积分的说明 7804609
捐赠科研通 2449278
什么是DOI,文献DOI怎么找? 1303129
科研通“疑难数据库(出版商)”最低求助积分说明 626796
版权声明 601291