Short Video Recommendation Method Based on Sentiment Analysis and K-means++

情绪分析 计算机科学 情报检索 自然语言处理 人工智能
作者
Rong Hu,Wei Yue
出处
期刊:International Journal of Advanced Computer Science and Applications [Science and Information Organization]
卷期号:15 (6)
标识
DOI:10.14569/ijacsa.2024.01506141
摘要

With the explosive growth of short video content, effectively recommending videos that interest users has become a major challenge. In this study, a short video recommendation model based on barrage sentiment analysis and improved K-means++ was raised to address the interest matching problem in short video recommendation systems. The model uses sentiment vectors to represent bullet content, clusters short videos through sentiment similarity calculation, and studies the use of clustering density to eliminate abnormal sample points during the clustering process. The study validated the effectiveness of the raised model through simulation experiments. The outcomes denoted that when the historical data size increased to 7000, the model's prediction accuracy could reach 0.81, recall rate was 0.822, and F1 value was 0.832. Compared with the current four mainstream recommendation algorithms, this model showed advantages in clustering time and complexity, with clustering time reduced to 8.2 seconds, demonstrating the efficiency of the model in raising recommendation efficiency and accuracy. In summary, the model proposed in the study has high recommendation accuracy in short video recommendation systems and meets the real-time demands of short video recommendation, which can effectively raise the quality of short video recommendations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鱼儿完成签到 ,获得积分10
刚刚
1秒前
zhang应助bofu采纳,获得80
2秒前
共享精神应助潇洒飞丹采纳,获得30
3秒前
Dding发布了新的文献求助20
4秒前
科研通AI2S应助小王采纳,获得10
4秒前
4秒前
fann完成签到,获得积分10
5秒前
5秒前
医学生完成签到,获得积分10
6秒前
大模型应助幽默鹭洋采纳,获得10
7秒前
Mu5k完成签到,获得积分10
8秒前
TTw发布了新的文献求助10
9秒前
爆米花应助激昂的青雪采纳,获得30
9秒前
qyl1023给qyl1023的求助进行了留言
9秒前
清清完成签到,获得积分10
10秒前
10秒前
FashionBoy应助bofu采纳,获得10
10秒前
SONG完成签到,获得积分10
11秒前
15秒前
甜甜芾完成签到,获得积分10
16秒前
共享精神应助三又一十八采纳,获得10
16秒前
Mycee完成签到 ,获得积分10
17秒前
GJL完成签到,获得积分20
17秒前
小十七果发布了新的文献求助10
17秒前
TTw完成签到,获得积分10
17秒前
赵亚男关注了科研通微信公众号
17秒前
18秒前
18秒前
Dding完成签到,获得积分10
19秒前
1514536hhh发布了新的文献求助30
19秒前
清爽绣连发布了新的文献求助30
19秒前
boyue完成签到,获得积分10
19秒前
wanci应助bofu采纳,获得10
20秒前
lightsyang完成签到,获得积分10
22秒前
22秒前
23秒前
fan发布了新的文献求助10
23秒前
魔幻友菱完成签到 ,获得积分10
24秒前
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956302
求助须知:如何正确求助?哪些是违规求助? 3502493
关于积分的说明 11108085
捐赠科研通 3233179
什么是DOI,文献DOI怎么找? 1787199
邀请新用户注册赠送积分活动 870515
科研通“疑难数据库(出版商)”最低求助积分说明 802105