A Theory of Credit Rating Criteria

信用评级 一致性(知识库) 发行人 精算学 违约概率 经济 计量经济学 结构性融资 计算机科学 财务 信用风险 金融危机 人工智能 宏观经济学
作者
Nan Guo,Steven Kou,Bin Wang,Ruodu Wang
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/mnsc.2023.01075
摘要

We propose a theory for rating financial securities in the presence of structural maximization by the issuer in a market with investors who rely on credit rating. Two types of investors, simple investors who price tranches solely based on the ratings and model-based investors who use the rating information to calibrate models, are considered. Concepts of self-consistency and information gap are proposed to study different rating criteria. In particular, the expected loss criterion used by Moody’s satisfies self-consistency, but the probability of default criterion used by Standard & Poor’s does not. Moreover, the probability of default criterion typically has a higher information gap than the expected loss criterion. Empirical evidence in the post–Dodd–Frank period is consistent with our theoretical implications. We show that a set of axioms based on self-consistency leads to a tractable representation for all self-consistent rating criteria, which can also be extended to incorporate economic scenarios. New examples of self-consistent and scenario-based rating criteria are suggested. This paper was accepted by Agostino Capponi, finance. Funding: This work was supported by the National Key Research and Development Program of China [Grant 2020YFA0712700], the Natural Sciences and Engineering Research Council of Canada [Grants RGPIN-2018-03823, RGPAS-2018-522590], and the National Natural Science Foundation of China [Grant 12371476]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2023.01075 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
时尚的梦曼完成签到,获得积分10
1秒前
张宝完成签到,获得积分10
2秒前
科研通AI5应助周周采纳,获得10
2秒前
Orange应助Ann采纳,获得10
3秒前
zino发布了新的文献求助10
3秒前
在水一方应助zixian采纳,获得10
4秒前
Firstoronre完成签到,获得积分10
4秒前
4秒前
小科完成签到,获得积分10
4秒前
莎莎士比亚完成签到,获得积分10
6秒前
jenkin完成签到 ,获得积分10
7秒前
半岛完成签到,获得积分10
8秒前
LL爱读书发布了新的文献求助10
9秒前
9秒前
9秒前
刘仁轨完成签到,获得积分10
10秒前
怡然雨雪完成签到,获得积分10
11秒前
陈大侠完成签到 ,获得积分10
11秒前
1233333发布了新的文献求助10
12秒前
12秒前
打打应助shubo采纳,获得10
14秒前
aa完成签到,获得积分10
14秒前
14秒前
半斤完成签到 ,获得积分10
16秒前
song完成签到,获得积分10
16秒前
16秒前
好大一个赣宝完成签到,获得积分10
16秒前
jenny_shjn发布了新的文献求助10
18秒前
小蘑菇应助浮生采纳,获得10
18秒前
yy爱科研发布了新的文献求助10
18秒前
初小花完成签到,获得积分10
21秒前
火星上的菲鹰应助1233333采纳,获得20
21秒前
叮叮当当完成签到,获得积分10
21秒前
aaa0001984完成签到,获得积分0
22秒前
顾矜应助shubo采纳,获得10
22秒前
Ann发布了新的文献求助10
22秒前
阿坤完成签到,获得积分10
23秒前
huahua完成签到 ,获得积分10
24秒前
x1981完成签到,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Introduction to Micromechanics and Nanomechanics 2nd Edition 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3535434
求助须知:如何正确求助?哪些是违规求助? 3113877
关于积分的说明 9313974
捐赠科研通 2811887
什么是DOI,文献DOI怎么找? 1544461
邀请新用户注册赠送积分活动 719442
科研通“疑难数据库(出版商)”最低求助积分说明 711431