Pseudo‐CT synthesis in adaptive radiotherapy based on a stacked coarse‐to‐fine model: Combing diffusion process and spatial‐frequency convolutions

计算机科学 霍恩斯菲尔德秤 图像质量 卷积(计算机科学) 人工智能 医学影像学 影像引导放射治疗 相似性(几何) 核医学 图像(数学) 计算机断层摄影术 医学 放射科 人工神经网络
作者
Hongfei Sun,Xiaohuan Sun,Jie Li,Jiarui Zhu,Zhi Yang,Fan Meng,Yu‐Fen Liu,Jie Gong,Zhongfei Wang,Yutian Yin,Ge Ren,Jing Cai,Lina Zhao
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17402
摘要

Abstract Background Cone beam computed tomography (CBCT) provides critical anatomical information for adaptive radiotherapy (ART), especially for tumors in the pelvic region that undergo significant deformation. However, CBCT suffers from inaccurate Hounsfield Unit (HU) values and lower soft tissue contrast. These issues affect the accuracy of pelvic treatment plans and implementation of the treatment, hence requiring correction. Purpose A novel stacked coarse‐to‐fine model combining Denoising Diffusion Probabilistic Model (DDPM) and spatial‐frequency domain convolution modules is proposed to enhance the imaging quality of CBCT images. Methods The enhancement of low‐quality CBCT images is divided into two stages. In the coarse stage, the improved DDPM with U‐ConvNeXt architecture is used to complete the denoising task of CBCT images. In the fine stage, the deep convolutional network model jointly constructed by fast Fourier and dilated convolution modules is used to further enhance the image quality in local details and global imaging. Finally, the accurate pseudo‐CT (pCT) images consistent with the size of the original data are obtained. Two hundred fifty paired CBCT‐CT images from cervical and rectal cancer, combined with 200 public dataset cases, were used collectively for training, validation, and testing. Results To evaluate the anatomical consistency between pCT and real CT, we have used the mean(std) of structure similarity index measure (SSIM), peak signal to noise ratio (PSNR), and normalized cross‐correlation (NCC). The numerical results for the above three metrics comparing the pCT synthesized by the proposed model against real CT for cervical cancer cases were 87.14% (2.91%), 34.02 dB (1.35 dB), and 88.01% (1.82%), respectively. For rectal cancer cases, the corresponding results were 86.06% (2.70%), 33.50 dB (1.41 dB), and 87.44% (1.95%). The paired t ‐test analysis between the proposed model and the comparative models (ResUnet, CycleGAN, DDPM, and DDIM) for these metrics revealed statistically significant differences ( p < 0.05). The visual results also showed that the anatomical structures between the real CT and the pCT synthesized by the proposed model were closer. For the dosimetric verification, mean absolute error of dosimetry (MAE does ) values for the maximum dose ( D max ), the minimum dose ( D min ), and the mean dose ( D mean ) in the planning target volume (PTV) were analyzed, with results presented as mean (lower quartile, upper quartile). The experimental results show that the values of the above three dosimetry indexes ( D min , D max , and D mean ) for the pCT images synthesized by the proposed model were 0.90% (0.48%, 1.29%), 0.82% (0.47%, 1.17%), and 0.57% (0.44%, 0.67%). Compared with 10 cases of the original CBCT image by Mann–Whitney test ( p < 0.05), it also proved that pCT can significantly improve the accuracy of HU values for the dose calculation. Conclusion The pCT synthesized by the proposed model outperforms the comparative models in numerical accuracy and visualization, promising for ART of pelvic cancers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_yLpYkn完成签到,获得积分10
刚刚
Mr兔仙森发布了新的文献求助10
刚刚
1秒前
4秒前
xueyu发布了新的文献求助10
4秒前
4秒前
文献完成签到 ,获得积分10
5秒前
levicho发布了新的文献求助10
6秒前
KK发布了新的文献求助10
7秒前
8秒前
Norl_Corxilea发布了新的文献求助10
9秒前
CodeCraft应助愉快的宛儿采纳,获得10
10秒前
一方通行发布了新的文献求助10
10秒前
levicho完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
13秒前
14秒前
Norl_Corxilea完成签到,获得积分10
15秒前
18秒前
我是老大应助Culto采纳,获得10
19秒前
21秒前
超帅青烟完成签到,获得积分10
21秒前
21秒前
科目三应助KK采纳,获得10
22秒前
Shuaibin_Pei完成签到,获得积分10
25秒前
张今天也要做科研呀完成签到,获得积分10
25秒前
shinysparrow完成签到,获得积分0
25秒前
传奇3应助LJJ采纳,获得10
26秒前
27秒前
28秒前
科研蚂蚁完成签到,获得积分10
29秒前
桃子完成签到 ,获得积分10
29秒前
魁梧的鲂发布了新的文献求助10
32秒前
健忘白应助su采纳,获得10
32秒前
Culto发布了新的文献求助10
33秒前
34秒前
猫猫完成签到,获得积分10
35秒前
37秒前
momo发布了新的文献求助10
38秒前
小宇子发布了新的文献求助10
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173