Pseudo‐CT synthesis in adaptive radiotherapy based on a stacked coarse‐to‐fine model: Combing diffusion process and spatial‐frequency convolutions

计算机科学 霍恩斯菲尔德秤 图像质量 卷积(计算机科学) 人工智能 医学影像学 影像引导放射治疗 相似性(几何) 核医学 图像(数学) 计算机断层摄影术 医学 放射科 人工神经网络
作者
Hongfei Sun,Xiaohuan Sun,Jie Li,Jiarui Zhu,Zhi Yang,Fan Meng,Yu‐Fen Liu,Jie Gong,Zhongfei Wang,Yutian Yin,Ge Ren,Jing Cai,Lina Zhao
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17402
摘要

Abstract Background Cone beam computed tomography (CBCT) provides critical anatomical information for adaptive radiotherapy (ART), especially for tumors in the pelvic region that undergo significant deformation. However, CBCT suffers from inaccurate Hounsfield Unit (HU) values and lower soft tissue contrast. These issues affect the accuracy of pelvic treatment plans and implementation of the treatment, hence requiring correction. Purpose A novel stacked coarse‐to‐fine model combining Denoising Diffusion Probabilistic Model (DDPM) and spatial‐frequency domain convolution modules is proposed to enhance the imaging quality of CBCT images. Methods The enhancement of low‐quality CBCT images is divided into two stages. In the coarse stage, the improved DDPM with U‐ConvNeXt architecture is used to complete the denoising task of CBCT images. In the fine stage, the deep convolutional network model jointly constructed by fast Fourier and dilated convolution modules is used to further enhance the image quality in local details and global imaging. Finally, the accurate pseudo‐CT (pCT) images consistent with the size of the original data are obtained. Two hundred fifty paired CBCT‐CT images from cervical and rectal cancer, combined with 200 public dataset cases, were used collectively for training, validation, and testing. Results To evaluate the anatomical consistency between pCT and real CT, we have used the mean(std) of structure similarity index measure (SSIM), peak signal to noise ratio (PSNR), and normalized cross‐correlation (NCC). The numerical results for the above three metrics comparing the pCT synthesized by the proposed model against real CT for cervical cancer cases were 87.14% (2.91%), 34.02 dB (1.35 dB), and 88.01% (1.82%), respectively. For rectal cancer cases, the corresponding results were 86.06% (2.70%), 33.50 dB (1.41 dB), and 87.44% (1.95%). The paired t ‐test analysis between the proposed model and the comparative models (ResUnet, CycleGAN, DDPM, and DDIM) for these metrics revealed statistically significant differences ( p < 0.05). The visual results also showed that the anatomical structures between the real CT and the pCT synthesized by the proposed model were closer. For the dosimetric verification, mean absolute error of dosimetry (MAE does ) values for the maximum dose ( D max ), the minimum dose ( D min ), and the mean dose ( D mean ) in the planning target volume (PTV) were analyzed, with results presented as mean (lower quartile, upper quartile). The experimental results show that the values of the above three dosimetry indexes ( D min , D max , and D mean ) for the pCT images synthesized by the proposed model were 0.90% (0.48%, 1.29%), 0.82% (0.47%, 1.17%), and 0.57% (0.44%, 0.67%). Compared with 10 cases of the original CBCT image by Mann–Whitney test ( p < 0.05), it also proved that pCT can significantly improve the accuracy of HU values for the dose calculation. Conclusion The pCT synthesized by the proposed model outperforms the comparative models in numerical accuracy and visualization, promising for ART of pelvic cancers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tammy完成签到 ,获得积分10
刚刚
Herisland完成签到 ,获得积分10
2秒前
lulalula完成签到,获得积分10
3秒前
NEO完成签到 ,获得积分10
5秒前
zcydbttj2011完成签到 ,获得积分10
7秒前
温暖的小鸭子完成签到,获得积分10
9秒前
13秒前
王泽厚发布了新的文献求助20
14秒前
雪花发布了新的文献求助10
16秒前
周全完成签到 ,获得积分10
20秒前
water应助科研通管家采纳,获得10
21秒前
Owen应助科研通管家采纳,获得10
21秒前
内向忆南完成签到,获得积分10
24秒前
翱翔者完成签到 ,获得积分10
27秒前
kryptonite完成签到 ,获得积分10
27秒前
月军完成签到,获得积分10
28秒前
欢呼寻冬完成签到 ,获得积分10
29秒前
西安浴日光能赵炜完成签到,获得积分10
30秒前
Joy完成签到 ,获得积分10
31秒前
Olsters完成签到 ,获得积分10
34秒前
老程完成签到,获得积分10
35秒前
zyb完成签到 ,获得积分10
38秒前
laber完成签到,获得积分0
38秒前
yue完成签到,获得积分10
38秒前
与共完成签到 ,获得积分10
41秒前
量子星尘发布了新的文献求助10
42秒前
gzf完成签到 ,获得积分10
43秒前
43秒前
D调的华丽完成签到,获得积分10
47秒前
xingxinghan完成签到 ,获得积分10
47秒前
ColinWine完成签到 ,获得积分10
50秒前
mix完成签到,获得积分10
50秒前
动听的谷秋完成签到 ,获得积分10
51秒前
刻苦努力的火龙果完成签到,获得积分10
52秒前
lling完成签到 ,获得积分10
55秒前
听寒完成签到,获得积分10
57秒前
珍珠火龙果完成签到 ,获得积分10
1分钟前
似水流年完成签到 ,获得积分10
1分钟前
sysi完成签到 ,获得积分10
1分钟前
绿波电龙完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022