Combining KAN with CNN: KonvNeXt's Performance in Remote Sensing and Patent Insights

计算机科学 专利分析 人工智能 模式识别(心理学) 数据科学
作者
Minjong Cheon,Changbae Mun
标识
DOI:10.20944/preprints202407.0663.v1
摘要

The rapid advancements in satellite technology have led to a significant increase in high-resolution remote sensing (RS) images, necessitating advanced processing methods. Additionally, a patent analysis revealed a significant increase in deep learning and machine learning applications in remote sensing, highlighting the growing importance of these technologies. Therefore, this paper introduces the Kolmogorov-Arnold Network (KAN) model to remote sensing, aiming to enhance efficiency and performance in RS applications. We conducted several experiments to validate KAN's applicability, starting with the EuroSAT dataset, where we combined the KAN layer with multiple pretrained CNN models. The optimal performance was achieved with ConvNeXt, leading to the development of the KonvNeXt model. KonvNeXt was evaluated on the Optimal-31, AID, and Merced datasets for validation, and it achieved accuracies of 90.59%, 94.1%, and 98.1%, respectively. The model also showed fast processing speed, with the Optimal-31 and Merced datasets completed in 107.63 seconds each, while the bigger and more complicated AID dataset took 545.91 seconds. This result is meaningful since it achieved faster speeds and comparable accuracy compared to the existing study which utilized VIT and proved KonvNeXt's applicability for remote sensing classification tasks. Furthermore, we investigated the model's interpretability by utilizing Occlusion Sensitivity and by displaying the influential regions, it validated its potential use in a variety of domains including medical imaging and weather forecasting. This paper is meaningful in that it is the first use of KAN in remote sensing classification, proving its adaptability and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Nyxia发布了新的文献求助10
1秒前
2秒前
刻苦的兔子完成签到,获得积分10
2秒前
Knight发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
may完成签到,获得积分10
4秒前
4秒前
5秒前
饱满懿轩发布了新的文献求助10
5秒前
兴奋采梦完成签到,获得积分10
5秒前
1234hai完成签到 ,获得积分10
5秒前
clh0_0clh发布了新的文献求助10
6秒前
6秒前
顺利蜗牛完成签到,获得积分10
6秒前
sjh发布了新的文献求助10
6秒前
6秒前
白秋雪发布了新的文献求助10
6秒前
7秒前
安静凡旋发布了新的文献求助10
7秒前
完美世界应助虚幻赛凤采纳,获得10
7秒前
ming发布了新的文献求助10
7秒前
科研通AI2S应助liuliqiong采纳,获得10
7秒前
稳重书双发布了新的文献求助10
8秒前
英俊牛排发布了新的文献求助10
8秒前
华仔应助yuan采纳,获得10
8秒前
Simplefy完成签到,获得积分20
9秒前
9秒前
9秒前
陆拾荒完成签到,获得积分10
9秒前
聪明摩托发布了新的文献求助10
10秒前
科研通AI5应助粘粘纸采纳,获得10
10秒前
啾啾咪咪发布了新的文献求助10
10秒前
搜集达人应助墨之默采纳,获得10
11秒前
13秒前
书生发布了新的文献求助20
13秒前
sjh完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246