Choice of the kinetic model significantly affects the outcome of techno-economic assessments of CO2-based methanol synthesis

甲醇 稳健性(进化) 环境科学 化学 制浆造纸工业 工艺工程 工程类 有机化学 生物化学 基因
作者
Judit Nyári,Daulet Izbassarov,Árpád I. Toldy,Ville Vuorinen,Annukka Santasalo-Aarnio
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:271: 116200-116200 被引量:10
标识
DOI:10.1016/j.enconman.2022.116200
摘要

Carbon dioxide hydrogenation to methanol is a cornerstone of the CO2 utilization toolkit, and its comparison to fossil-based methanol through techno-economic assessments (TEAs) has helped establish barriers to its commercial feasibility. TEAs are often performed in process simulation software that relies on kinetic models (KMs). The choice of KM could influence the outcome of the TEA, however, their effect has not been quantified earlier. This study quantifies this effect through TEAs performed using three different KMs in Aspen Plus™. Three KMs are selected for comparison: two of them are commonly used in TEAs while also a third, a recently published model, will be studied herein. The models are first validated in Aspen Plus™ and then compared in a series of sensitivity analyses in a one-pass reactor. Finally, a TEA study is conducted for a large-scale methanol plant to investigate the effects of the KM choice. It was found that the choice of the kinetic model significantly influences the results of TEAs as it can result in a 10% difference in the levelized cost of methanol. This can be mainly attributed to differences in one-pass yield. As CO2 utilization approaches economic viability, understanding such uncertainties will be crucial for successful project planning. Hence, these results suggest that extending a TEA's sensitivity analysis to cover the KM's contribution could increase confidence in the robustness of the TEA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大力的寻琴完成签到 ,获得积分10
刚刚
1秒前
任乘风完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
阿达发布了新的文献求助10
6秒前
zhxi完成签到,获得积分10
6秒前
隐形世开完成签到 ,获得积分10
7秒前
7秒前
7秒前
zzzoooe发布了新的文献求助10
8秒前
吱吱发布了新的文献求助10
9秒前
Ono发布了新的文献求助20
10秒前
11秒前
机智双双完成签到,获得积分10
11秒前
11秒前
椰子糖发布了新的文献求助10
11秒前
12秒前
哈哈恬发布了新的文献求助10
12秒前
聪明的鹤完成签到 ,获得积分10
14秒前
完美世界应助酒馆采纳,获得10
14秒前
妞妞完成签到,获得积分10
14秒前
14秒前
zhaozhao发布了新的文献求助10
15秒前
YY完成签到,获得积分10
15秒前
16秒前
一样谦虚发布了新的文献求助10
17秒前
yulin发布了新的文献求助10
17秒前
萌萌雨完成签到,获得积分10
17秒前
大白完成签到,获得积分10
17秒前
18秒前
FUsir发布了新的文献求助10
19秒前
19秒前
CipherSage应助杨杨采纳,获得10
19秒前
Owen应助tong采纳,获得10
19秒前
20秒前
08发布了新的文献求助10
20秒前
orixero应助椰子糖采纳,获得10
20秒前
黑梦发布了新的文献求助10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515890
求助须知:如何正确求助?哪些是违规求助? 3098083
关于积分的说明 9237912
捐赠科研通 2793061
什么是DOI,文献DOI怎么找? 1532791
邀请新用户注册赠送积分活动 712304
科研通“疑难数据库(出版商)”最低求助积分说明 707256