生物分析
适体
清脆的
化学
三磷酸腺苷
咪唑酯
组合化学
生物传感器
生物物理学
生物化学
纳米技术
色谱法
材料科学
分子生物学
生物
基因
无机化学
作者
Yingwen Wang,Dun Zhang,Yan Zeng,Yan Sun,Peng Qi
标识
DOI:10.1016/j.bios.2022.114784
摘要
ADP/ATP ratio is a sensitive indicator of changes in cellular energy status and is important for regulating cell signaling activities. Ultrasensitive quantification of ADP and ATP concentration in a single system is in great demand for bioanalysis and early disease diagnosis. Hence, a target-regulated luminous nanoplatform based on clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a integrated zeolite imidazolate framework (ZIF-90)@Ag3AuS2@Fe3O4 nanocomposites was established for the simultaneous detection of ADP and ATP. This simultaneous and ultrasensitive quantification nanoplatform (dsDNA-ZIF-90@Ag3AuS2@Fe3O4) composed an ADP sensitive module based on the aptamer-activated CRISPR/Cas12a and an ATP responsive module based on ATP-triggered ZIF-90 decomposition and quencher loading release. The binding and signaling processes of the different nucleotides were independent, and there was no interference between the two modules. Utilizing the high specific binding and strong signal amplification of this method, limits of detection as low as 0.022 and 0.079 nM were obtained within 30 min for ADP and ATP, respectively. Moreover, the proposed biosensor exhibited high accuracy, specificity, and excellent recovery in serum samples and bacterial biofilms. Therefore, the dsDNA-ZIF-90@Ag3AuS2@Fe3O4-based nanoplatform provides a promising method for ultrasensitive dual-mode quantification of ADP and ATP in the same system, possessing great potential for bioanalysis and early disease diagnosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI