亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Knowledge Tracing Model with Learning and Forgetting Behavior

遗忘 计算机科学 跟踪(心理语言学) 过程(计算) 任务(项目管理) 追踪 知识获取 人工智能 领域知识 知识管理 认知心理学 心理学 工程类 哲学 系统工程 操作系统 语言学
作者
Mingzhi Chen,Quanlong Guan,Yizhou He,Zhenyu He,Liangda Fang,Weiqi Luo
标识
DOI:10.1145/3511808.3557622
摘要

The Knowledge Tracing (KT) task aims to trace the changes of students' knowledge state in real time according to students' historical learning behavior, and predict students' future learning performance. The modern KT models have two problems. One is that these KT models can't reflect students' actual knowledge level. Most KT models only judge students' knowledge state based on their performance in exercises, and poor performance will lead to a decline in knowledge state. However, the essence of students' learning process is the process of acquiring knowledge, which is also a manifestation of learning behavior. Even if they answer the exercises incorrectly, they will still gain knowledge. The other problem is that many KT models don't pay enough attention to the impact of students' forgetting behavior on the knowledge state in the learning process. In fact, learning and forgetting behavior run through students' learning process, and their effects on students' knowledge state shouldn't be ignored. In this paper, based on educational psychology theory, we propose a knowledge tracing model with learning and forgetting behavior (LFBKT). LFBKT comprehensively considers the factors that affect learning and forgetting behavior to build the knowledge acquisition layer, knowledge absorption layer and knowledge forgetting layer. In addition, LFBKT introduces difficulty information to enrich the information of the exercise itself, while taking into account other answering performances besides the answer. Experimental results on two public datasets show that LFBKT can better trace students' knowledge state and outperforms existing models in terms of ACC and AUC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
张怡博完成签到 ,获得积分10
2秒前
Lucas应助jacs111采纳,获得10
8秒前
张子烜完成签到,获得积分10
13秒前
15秒前
jacs111发布了新的文献求助10
20秒前
44秒前
李李发布了新的文献求助10
47秒前
TZ完成签到 ,获得积分10
50秒前
Dritsw应助李李采纳,获得10
52秒前
53秒前
1分钟前
爱静静应助西门吹雪采纳,获得30
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Dritsw应助Maple采纳,获得10
1分钟前
郑雅茵发布了新的文献求助30
1分钟前
1分钟前
Tendency完成签到 ,获得积分10
1分钟前
郑雅茵完成签到 ,获得积分20
2分钟前
小张完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Dritsw应助LANER采纳,获得10
2分钟前
AAA发布了新的文献求助10
2分钟前
jacs111发布了新的文献求助10
2分钟前
小胖完成签到 ,获得积分10
2分钟前
多情的续完成签到,获得积分10
2分钟前
ktw完成签到,获得积分10
2分钟前
2分钟前
3分钟前
呆呆不呆Zz完成签到,获得积分10
3分钟前
令宏发布了新的文献求助30
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
Dritsw应助罗舒采纳,获得10
3分钟前
JamesPei应助霸气的金鱼采纳,获得10
3分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965659
求助须知:如何正确求助?哪些是违规求助? 3510896
关于积分的说明 11155538
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874161
科研通“疑难数据库(出版商)”最低求助积分说明 804214