已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Knowledge Tracing Model with Learning and Forgetting Behavior

遗忘 计算机科学 跟踪(心理语言学) 过程(计算) 任务(项目管理) 追踪 知识获取 人工智能 领域知识 知识管理 认知心理学 心理学 工程类 哲学 系统工程 操作系统 语言学
作者
Mingzhi Chen,Quanlong Guan,Yizhou He,Zhenyu He,Liangda Fang,Weiqi Luo
标识
DOI:10.1145/3511808.3557622
摘要

The Knowledge Tracing (KT) task aims to trace the changes of students' knowledge state in real time according to students' historical learning behavior, and predict students' future learning performance. The modern KT models have two problems. One is that these KT models can't reflect students' actual knowledge level. Most KT models only judge students' knowledge state based on their performance in exercises, and poor performance will lead to a decline in knowledge state. However, the essence of students' learning process is the process of acquiring knowledge, which is also a manifestation of learning behavior. Even if they answer the exercises incorrectly, they will still gain knowledge. The other problem is that many KT models don't pay enough attention to the impact of students' forgetting behavior on the knowledge state in the learning process. In fact, learning and forgetting behavior run through students' learning process, and their effects on students' knowledge state shouldn't be ignored. In this paper, based on educational psychology theory, we propose a knowledge tracing model with learning and forgetting behavior (LFBKT). LFBKT comprehensively considers the factors that affect learning and forgetting behavior to build the knowledge acquisition layer, knowledge absorption layer and knowledge forgetting layer. In addition, LFBKT introduces difficulty information to enrich the information of the exercise itself, while taking into account other answering performances besides the answer. Experimental results on two public datasets show that LFBKT can better trace students' knowledge state and outperforms existing models in terms of ACC and AUC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洁净思枫发布了新的文献求助10
1秒前
shenyihui发布了新的文献求助10
1秒前
Daisy发布了新的文献求助10
5秒前
10秒前
11秒前
ZZZ完成签到 ,获得积分10
12秒前
13秒前
Hendryx关注了科研通微信公众号
16秒前
fancy完成签到 ,获得积分10
20秒前
21秒前
21秒前
24秒前
24秒前
化学发布了新的文献求助10
25秒前
无限海白发布了新的文献求助30
26秒前
26秒前
chicwhr完成签到,获得积分10
26秒前
27秒前
28秒前
29秒前
迟迟完成签到 ,获得积分10
30秒前
Cancellerzz发布了新的文献求助10
30秒前
30秒前
31秒前
SciGPT应助Grandir采纳,获得20
31秒前
缥缈的背包完成签到 ,获得积分10
31秒前
32秒前
无限海白完成签到,获得积分20
32秒前
Hendryx发布了新的文献求助10
35秒前
彭于晏应助科研通管家采纳,获得10
38秒前
杳鸢应助科研通管家采纳,获得30
38秒前
杳鸢应助科研通管家采纳,获得30
38秒前
大模型应助科研通管家采纳,获得10
38秒前
JamesPei应助科研通管家采纳,获得10
38秒前
39秒前
Cancellerzz完成签到,获得积分10
43秒前
zho发布了新的文献求助10
43秒前
Owen应助ddj采纳,获得30
43秒前
cocolu应助司空三毒采纳,获得10
44秒前
Xu完成签到 ,获得积分10
45秒前
高分求助中
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3417333
求助须知:如何正确求助?哪些是违规求助? 3018956
关于积分的说明 8886126
捐赠科研通 2706477
什么是DOI,文献DOI怎么找? 1484297
科研通“疑难数据库(出版商)”最低求助积分说明 685955
邀请新用户注册赠送积分活动 681110