材料科学
氢
氢脆
母材
应变率
冶金
扩散
焊接
脆化
拉伸试验
微观结构
极限抗拉强度
复合材料
热影响区
脆性
热力学
化学
腐蚀
物理
有机化学
作者
Dazheng Zhang,Changzhi Cui,Weijuan Li,Jiakai Xu
标识
DOI:10.1002/srin.202200539
摘要
AH36 marine steel processed through high heat‐input welding is subjected to microstructural characterization, hydrogen permeation test, internal friction test, and slow strain rate tensile test to reveal its hydrogen diffusion and hydrogen embrittlement failure behaviors. Compared with the base metal, the coarse‐grained heat‐affected zone (CGHAZ) exhibits a significantly coarsened microstructure and decreased hydrogen trap density, resulting in a high hydrogen diffusion coefficient and short hydrogen permeation time. The presence of hydrogen yields a hydrogen‐induced Snoek internal friction peak and promotes the movement of the Snoek–Kê–Köster internal friction peak to the low‐temperature region. In addition, B and Kê peaks, which are not found in the base metal, appear in the CGHAZ. With increasing hydrogen content, the plastic loss and brittle fracture of the AH36 marine steel become increasingly significant, and the hydrogen embrittlement sensitivity of the heat‐affected zone increases compared with that of the base metal. The discontinuous yield phenomenon gradually disappears under slow strain rate tension owing to the weak pinning effect of the Cottrell atmosphere on mobile dislocations.
科研通智能强力驱动
Strongly Powered by AbleSci AI