Unsupervised cross-domain functional MRI adaptation for automated major depressive disorder identification

功能磁共振成像 人工智能 计算机科学 杠杆(统计) 重性抑郁障碍 模式识别(心理学) 鉴定(生物学) 机器学习 心理学 神经科学 认知 植物 生物
作者
Yuqi Fang,Mingliang Wang,Guy G. Potter,Mingxia Liu
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:84: 102707-102707 被引量:33
标识
DOI:10.1016/j.media.2022.102707
摘要

Resting-state functional magnetic resonance imaging (rs-fMRI) data have been widely used for automated diagnosis of brain disorders such as major depressive disorder (MDD) to assist in timely intervention. Multi-site fMRI data have been increasingly employed to augment sample size and improve statistical power for investigating MDD. However, previous studies usually suffer from significant inter-site heterogeneity caused for instance by differences in scanners and/or scanning protocols. To address this issue, we develop a novel discrepancy-based unsupervised cross-domain fMRI adaptation framework (called UFA-Net) for automated MDD identification. The proposed UFA-Net is designed to model spatio-temporal fMRI patterns of labeled source and unlabeled target samples via an attention-guided graph convolution module, and also leverage a maximum mean discrepancy constrained module for unsupervised cross-site feature alignment between two domains. To the best of our knowledge, this is one of the first attempts to explore unsupervised rs-fMRI adaptation for cross-site MDD identification. Extensive evaluation on 681 subjects from two imaging sites shows that the proposed method outperforms several state-of-the-art methods. Our method helps localize disease-associated functional connectivity abnormalities and is therefore well interpretable and can facilitate fMRI-based analysis of MDD in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
taozi完成签到,获得积分0
2秒前
3秒前
费乐巧发布了新的文献求助10
4秒前
科研通AI5应助ww采纳,获得10
5秒前
Hello应助ztlooo采纳,获得10
6秒前
6秒前
bhvgbvnhvnh完成签到,获得积分10
7秒前
7秒前
圆子完成签到 ,获得积分10
8秒前
AQ完成签到 ,获得积分10
9秒前
zqzqz发布了新的文献求助10
10秒前
10秒前
10秒前
所所应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得50
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得30
10秒前
10秒前
打打应助科研通管家采纳,获得10
10秒前
wanci应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
LYSM应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得30
11秒前
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
12秒前
bkagyin应助白茶泡泡球采纳,获得10
14秒前
15秒前
yao123发布了新的文献求助10
17秒前
mengwensi发布了新的文献求助10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668076
求助须知:如何正确求助?哪些是违规求助? 3226524
关于积分的说明 9769880
捐赠科研通 2936484
什么是DOI,文献DOI怎么找? 1608572
邀请新用户注册赠送积分活动 759677
科研通“疑难数据库(出版商)”最低求助积分说明 735474