希尔伯特-黄变换
自相关
小波
振动
情态动词
噪音(视频)
信号(编程语言)
降噪
模式识别(心理学)
计算机科学
制动器
人工智能
特征提取
工程类
数学
声学
白噪声
统计
材料科学
物理
图像(数学)
高分子化学
程序设计语言
机械工程
电信
作者
Yanjuan Hu,Yi Ouyang,Zhanli Wang,Haiyue Yu,Liang Liu
标识
DOI:10.1016/j.ymssp.2022.109972
摘要
The research objective is the application of the modal decomposition methods in dynamic balancing machine detection. This paper analyzes the problem of feature extraction of dynamic unbalanced signals by using complementary EEMD with adaptive noise (CEEMDAN). CEEMDAN was introduced to decompose the original unbalanced signal. The orthogonal coefficient method, wavelet soft threshold method, and autocorrelation function (ACF) was introduced to remove the irrelevant intrinsic mode functions (IMFs). Moreover, we compare and analyze these methods through simulation and experiments. Simulation results demonstrate that the CEEMDAN method greatly reduces the reconstruction error. The feasibility of the proposed method has been verified experimentally, the real machine signal is sampled and the actual imbalance information is extracted for comparison, which proves the superiority of CEEMDAN over EMD and EEMD in practical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI