封装(网络)
共价键
合理设计
材料科学
磷光
纳米技术
化学
有机化学
计算机科学
光学
荧光
物理
计算机网络
作者
Yongqiang Zhang,Manyu Li,Siyu Lu
出处
期刊:Small
[Wiley]
日期:2022-11-27
卷期号:19 (31)
被引量:64
标识
DOI:10.1002/smll.202206080
摘要
Multicolored phosphorescent materials based on carbon dots (CDs) constructed using the same or similar precursors with long lifetimes are conducive to their wide range of practical applications due to the developed compatibility. Herein, a universal method is developed to prepare long-lived multicolored phosphorescent CD-based composites for which heavy-metal doping is not required. The multicolored CDs are encapsulated in silica via silane hydrolysis, which forms many covalent SiOC and SiC bonds; hence, the vibrations and rotations of the luminescent centers on the CD surfaces are hindered. The transformation of SiOC to a more rigid SiC moiety occurs during high-temperature calcination. Furthermore, during calcination, the silica collapses, resulting in more tightly encapsulated CDs. The synergistic effect of these two calcination phenomena produces blue, green, yellow, and red phosphorescence, at wavelengths spanning 465 to 680 nm and with lifetimes of up to 2.11 s. Taking advantage of their superior phosphorescence performances, the CD-based composites are successfully applied to 3D multichannel information storage and encryption.
科研通智能强力驱动
Strongly Powered by AbleSci AI