Real-time Pseudo-LiDAR 3D object detection with geometric constraints

激光雷达 目标检测 计算机科学 水准点(测量) 人工智能 计算机视觉 探测器 估计员 可视化 代表(政治) 维数(图论) 模式识别(心理学) 遥感 数学 政治 电信 统计 地质学 法学 纯数学 地理 政治学 大地测量学
作者
Changcai Li,Haitao Meng,Gang Chen,Long Chen
标识
DOI:10.1109/itsc55140.2022.9922503
摘要

Three-dimension (3D) object detection is an essential task in autonomous driving. Although recent LiDAR-based 3D object detection techniques have been well-studied and achieve high detection accuracy, the cost of LiDAR sensors causes a high premium for their practical implementation. Recently introduced Pseudo-LiDAR based methods that utilize image data to detect objects show great prospects for their high cost-effectiveness, however, they tend to be computational complexity and can not meet the realtime requirement. In this paper, we propose a light-weight Pseudo-LiDAR 3D detection system which achieves both high accuracy and high responsiveness. Specifically, we adopt an efficient depth estimator where Binary Neural Networks (BNN) is employed to achieve timely depth prediction. To tackle the accuracy degradation issue caused by the quantitation of the BNNs, we introduce the geometric constraints of virtual planes into the BNN training to enhance the completeness of the objects and improve their representation in 3D space. For the 3D object detector of our system, we provide effective improving schemes including a deviation-aware (DA) head and a finetuning module (FM) for converting existing LiDAR-based detectors to high efficient Pseudo-LiDAR detection components. Experiments on the KITTI benchmark show that our system can conduct the 3D detection within only 35 ms while achieving competitive results to the state-of-the-art (SOTA) algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LL完成签到,获得积分10
1秒前
1秒前
1q完成签到,获得积分10
1秒前
铁瓜李完成签到 ,获得积分10
1秒前
Misty_完成签到,获得积分10
1秒前
李爱国应助查理采纳,获得10
1秒前
ling发布了新的文献求助10
2秒前
jhw完成签到 ,获得积分10
4秒前
TRACEY完成签到,获得积分10
5秒前
5秒前
今后应助咋咋采纳,获得10
6秒前
6秒前
shiqi完成签到,获得积分10
7秒前
超级的鞅发布了新的文献求助10
7秒前
yutos完成签到,获得积分20
8秒前
8秒前
Hello应助整个der采纳,获得10
9秒前
10秒前
可爱妹发布了新的文献求助10
11秒前
冉遗应助ll采纳,获得10
11秒前
调皮傲旋发布了新的文献求助30
11秒前
Suc发布了新的文献求助10
12秒前
四号花店发布了新的文献求助10
13秒前
13秒前
13秒前
传奇3应助lei采纳,获得10
16秒前
16秒前
17秒前
传奇3应助超级的鞅采纳,获得10
17秒前
香风智乃完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
mi完成签到,获得积分10
19秒前
hancyzhang完成签到 ,获得积分10
20秒前
20秒前
20秒前
20秒前
汉堡包应助shi hui采纳,获得10
21秒前
21秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215340
求助须知:如何正确求助?哪些是违规求助? 4390475
关于积分的说明 13670085
捐赠科研通 4252359
什么是DOI,文献DOI怎么找? 2333057
邀请新用户注册赠送积分活动 1330667
关于科研通互助平台的介绍 1284488